Turinga i Tarskiego nowoczesny paradygmat matematyki . Porównanie z ujęciem Kazimierza Trzęsickiego

­Witold Marciszewski

If a machine is expected to be infallible, it cannot also  be intelligent. – Alan Turing
Civilization advances by extending the number of important operations which  cannot be  performed without thinking about them.
– A. N. Whitehead

Przez paradygmat nauki rozumie się w artykule sposób jej uprawiania, praktykowany lub zalecany, przez określoną grupę uczonych. Należą do niego przyjmowane przez nich założenia ontologiczne i epistemologiczne (czyli filozofia danej dyscypliny) oraz strategie badań ujmowane w reguły metodologiczne.

Pojęcie więc paradygmatu jest opisowo-socjologiczne, przydatne w badaniach nad dziejami nauki, co w odniesieniu do nauk przyrodniczych czyni Profesor Kazimierz Trzęsicki w artykule „Paradygmat Turinga”, jak też – w odniesieniu do matematyki – autor obecnych rozważań. Pomimo tych różnych odniesień, mamy tu płaszczyznę do porównań, mianowicie wkład Alana Turinga w zasady uprawiania nauki.

wzajem środków rozwiązywania problemów matematycznych drogą dowodzenia. Jednym są reguły strukturalne, które służą do formalizacji czyli algorytmicznej mechanizacji procesu dowodzenia. Ich niezawodność jest oczywista z intuicyjnego punktu widzenia. Do nich zalicza Tarski regułę odrywania; w odcinku §4.4. podaję argument za jej niezawodnością rozważany w perspektywie ewolucyjno-biologicznej. Ma on wykazać niezawodność intuicji logicznej, niezbędnej do weryfikacji hipotez, w odróznieniu od zawodności intuicji odkrywczej (odcinki §4.4 i §4.5). Ta druga da się porównać z wyrocznią w sensie Turinga, której „wyroki” (akty intuicji) wymagają weryfikacji na gruncie intuicji logicznej. Ta odkrywcza nie jest nieomylna, lecz jej omylność jest nieodłączna od twórczych, a więc inteligentnych, poszukiwań badawczych (por. motto).
Tarski w swych fundamentalnych pracach [1933, 1936] wiele uwagi poświęca regule indukcji nieskończonej która nie należy do reguł strukturalnych, gdyż nie operuje algorytmicznie na ciągach symboli (jako obiektów fizycznych) lecz odwołuje się do pojęciowego ujęcia nieskończoności zbioru liczb naturalnych. Pomimo braku cechy algorytmiczności Tarski uważa ją za równie niezawodną jak reguły strukturalne, ponieważ przemawia za nią jej nieodzowność w rozwiązywaniu bardzo licznych i ważnych zagadnień matematyznych; temat ten jest tu dyskutowany w konkluzjach z odcinka §6.6.
Czy jest powód, żeby te zasady badań naukowych Turinga i Tarskiego, określać zaczerpniętym od Kuhna [1962] terminem „paradygmat”? Skąd pomysł, żeby kategoriach Kuhna rozpatrywać twórczość tych autorów, którzy drogą wyników  limitatywnych (w szczególności Gödla i Turinga) odmienili oblicze logiki, a nawet filozofii nauki? Zawdzięczam go inspirowaniu się artykułem Trzęsickiego „Paradygmat Turinga”; bez niego nie powstałaby obecna praca.
Przyjmując terminy „paradygmat” i „zmiana paradygmatu” (paradigm shift), jednocześnie dystansuję się od kuhnowskiego utożsamiania zmiany paradygmatu z rewolucją naukową. Normalny postęp w nauce, podobnie jak w gospodarce i polityce, jest kumulatywny i ewolucyjny. Bierze się z przemyślanych reform, a nie z rewolucyjnych zrywów, które do fundamentów burzą dawny system, żeby zbudować nowy wedle koncepcji doktrynerów. Taka wizja postępu nauki byłaby dla niej deprecjonująca.
Paradygmat Turinga-Tarskiego powstaje na przecięciu dwóch historycznych paradygmatów, z których jeden wiąże się z Kartezjuszem, drugi z Leibnizem. Nowość polega na płodnym scaleniu dwóch linii rozwojowych traktowanych wcześniej rozdzielnie. Precyzując pojęcie paradygmatu na skalę obecnych rozważań, wyróżniam w nim założenia ontologiczne, to jest, jakiego rodzaju indywidua tworzą uniwersum danej dziedziny. W ujęciu kartezjańskim indywidauami są stany umysłu, a w leibnizjańskim – napisy (jako przedmioty fizyczne) lub stany maszyny kodujące owe napisy (np. kodowanie cyfr w układach trybów kalkulatora Leibniza).
Tej różnicy ontologicznej odpowiada zróżnicowanie strategii badawczych czyli podejście metodologiczne. Strategie są określane przez reguły czyli zalecenia odpowiednich procedur. U Kartezjusza są to reguły kierowania umysłem (regulae ad directionem ingenii), u Leibniza – strukturalne reguły operowania symbolami.
Każde z tych ujęć, jako operujące jednym tylko uniwersum i jednym typem reguł można określić jako monistyczne, zaś uniwersum Turinga i Tarskiego jako dualistyczne: ma ono dwa uniwersa (kartezjańskie i leibnizjańskie) oraz dwa typy reguł – strukturalne (algorytmiczne), oraz takie jak reguła nieskończonej indukcji. Ta jest intuicyjna lecz także niezawodna dzięki potwierdzaniu się w niezliczonych płodnych zastosowaniach, bez których nie byłoby matematyki.
Ów charakter dualistyczny jest tym, co znamionuje nowoczesny paradygmat matematyki. Jest on w opozycji do takich mechanicystycznych monizmów, jak np. Wittgensteina i Koła Wiedeńskiego; obecnie zdaje się do nich należeć projekt silnej SI.
Dalszy ciąg tej historii to etap, w którym algorytmy uzyskane dzięki wyrocznej intuicji torują drogę nowym intuicjom. Te zaś nowym algorytmom, i tak dalej – działając na rzecz postępu cywilizacji (por. motto Whiteheada). Jest to proces bez kresu, toteż taki dynamiczny dualizm (intuicja vs algorytm) wnosi w ów proces cechę infinityzmu, obcą kierunkom mechanicystycznym.
Tarski wychodzi od pewnej obserwacji dotyczącej środków dowodowych, którym dał nazwę logicznych reguł strukturalnych. To znaczy takich, że dyktowane nimi operacje na formułach – jako ciągach symboli, każdy o takiej to a takiej strukturze – polegają na przekształcaniu tych struktur czysto mechanicznym, jak opuszczanie lub dopisywanie symboli. Taka jest procedura w czysto formalnym (czyli strukturalnym) prowadzeniu dowodu na papierze i taka sama procedura zapisywania symboli (zer, jedynek) na taśmie maszyny Turinga. W tym sensie dowodzenie lub obliczanie za pomocą samych reguł strukturalnych ma charakter mechaniczny.
Tarski zauważa, że – wbrew doktrynie i oczekiwaniom mechanicystów – reguły strukturalne nie starczą do uprawiania matematyki. To, co można przez nie uzyskać, to cząstka wielkiego skarbca wyników matematycznych. Oto myśl przewodnia artykułu [1936] (wersja w [1956, s. 411]).
Istnieją reguły dowodzenia różne od strukturalnych, które z intuicyjnego punktu widzenia są tak jak tamte nieomylne, tzn. prowadzące niezawodnie od zdań prawdziwych do prawdziwych, lecz nie dające się do tamtych sprowadzić („cannot be reduced”).
Szczególnie w tej klasie reprezentatywna jest zdaniem Tarskiego reguła indukcji nieskończonej. Za jej przyjęciem przemawia to, że umożliwia ona rozstrzyganie wielkiej liczby zagadnień, które na gruncie reguł strukturalnych są nierozstrzygalne. Przykładem teoria liczb, która swój imponujący zakres rozstrzygalności zawdzięcza regule indukcji. Ze względu na jej infinistyczny charakter, czyli z tego powodu, że obejmuje ona nieskończenie wiele tez, nigdy jej nie wydrukuje taka maszyna jak UMT. (zob. Tarski [1933], w wydaniu [1995] s. 149])
W tym punkcie zbiegają się drogi Tarskiego i Turinga. Trudno o lepszy przykład tego, czym jest, jak działa, oraz jak jest niezbędna w matematyce wyrocznia, niż ten przypadek, jaki stanowi reguła nieskończonej indukcji. Podobnie jak Turing za konieczne dla postępu matematyki uznaje komplementarność UMT i wyroczni, tak Tarski odnotowuje komplentarność reguł strukturalnych (typowych dla UMT) oraz tych reprezentowanych przez regułę indukcji.
Porównawczy charakter obecnych rozważań bierze się stąd, że Trzęsicki inne niż obecny artykuł wkłada treści w pojęcie paradygmatu Turinga. Przyjmując T. Kuhna pojęcie rewolucji naukowej w sensie radykalnej zmiany paradygmatu, ujmuje on dzieje nauki jako arenę dwóch rewolucji. W pierwszej paradygmat Arystotelesa został wyparty przez Galileusza; druga zaś rewolucja polega na zastąpieniu paradygmatu Galileusza przez turingowski. Za wynik tej zmiany paradygmatu Trzęsicki zdaje się uważać (jeśli dobrze rozumiem) kosmologię Konrada Zusego. Pojmuje ona Wszechświat jako samoprogramujący się automat komórkowy (równoważny UMT?).
Rodzi to listę pytań. Jak w kategoriach informatycznych określić w takim uniwersum miejsce ludzi? Czy są też automatami, będąc elementami tego giga-automatu? Czy te ludzkie komponenty są determinowane przez program będący dziełem Wszechświata? Czy algorytmiczność jego egzystencji skutkuje determinizmem? Jakby się on miał do determinizmu typu Laplace’a?
Szczególnie ważne jest pytanie: czy właściwości Wszechświata jako automatu komórkowego dopuszczają zachodzenie w nim procesów analogowych, na wzór procesów w ludzkim mózgu? Jeśli nie, to jak pogodzić istnienie we wewnętrzu Wszechświata elementów analogowych, jakimi są mózgi?
To nie koniec pytań, a ich wielość i waga jest miarą śmiałości ujęcia Trzęsickego, która czyni to ujęcie obiecującym tematem dyskusji na gruncie filozofii nauki.

Zaszufladkowano do kategorii Bez kategorii | Dodaj komentarz

O życzliwości w życiu, etyce i rozmyślaniach nad sztuczną inteligencją

Obecny wpis umieszczam w blogu w imieniu kolegów, dr Bartłomieja Skowrona i dr Marcina Rojszczaka, którzy wystąpili ostatnio na prowadzonym przeze mnie Seminarium z Filozofii Nauki, z intrygującym referatem pt. „Koncepcja życzliwej sztucznej inteligencji. Zagadnienia etyczne i prawne„.

W centrum referatu stało etyczne pojęcie życzliwości (w odróżnieniu od potocznego!) oraz jego rola w projektowaniu wiarygodnych, czyli budzących zaufanie użytkownika, systemów sztucznej inteligencji (SI). Projektowanie było rozumiane szeroko, również w kontekście czegoś, co można by nazwać „infrastrukturą legislacyjną” — a więc takim kształtem regulacji prawnych, które sprzyjałyby tworzeniu systemów życzliwych dla człowieka. W tym kontekście zostały przedstawione najnowsze projekty aktów prawnych Unii Europejskiej, dotyczące aktualnych i możliwych zastosowań SI. Prelegenci oceniali je krytycznie, zwracając uwagę na konieczność głębszego powiązania prawodawstwa z etyką życzliwości.

Tyle tytułem mojego wprowadzenia.

Jako właściwy wstęp do blogowej dyskusji proponuję krótki tekst samych prelegentów, którzy zarysowują etyczne pojęcie życzliwości i stawiają pewne pytania dotyczące życzliwej sztucznej inteligencji…
Powstał on spontanicznie, w efekcie rozmyślań nad spostrzeżeniami i komentarzami uczestników seminarium.

Gorąco zachęcam do rozmowy wszystkich czytelników bloga, nie tylko uczestników seminarium — Paweł Stacewicz

A OTO INICJUJĄCY DYSKUSJĘ TEKST PRELEGENTÓW:

Pojęcie życzliwości pojawia się zarówno w tekstach starożytnych (chociażby w Etyce Nikomachejskiej Arystotelesa), jak i zupełnie współczesnych (spośród tekstów polskich zasługują na uwagę pisma Marii Ossowskiej i Czesława Znamierowskiego). Część etyków, w szczególności etycy angielskiego oświecenia moralnego widzieli w życzliwości podstawę wszelkiej moralności i postulowali prawo o powszechnej obowiązywalności życzliwości.

Niemniej, gdy wspominamy o życzliwości przy okazji różnych publicznych dyskusji, najczęściej spotykamy się z pobłażliwym uśmiechem, który z jednej strony łaskawie i przyjaźnie wspiera ideę wołającą o powszechną życzliwość, a z drugiej strony lekceważąco odnosi się do siły i doniosłości życzliwości. Za tą spontaniczną pobłażliwością stoi takie mniej więcej rozumowanie: „przecież uprzejmość, serdeczność i empatia nie mogą stanowić jakieś trwałej podstawy dla realnych rozstrzygnięć moralnych. Jedni są mili, a inni nie są mili. I tyle w temacie życzliwości”.
W przeciwieństwie do takiej postawy twierdzimy, że życzliwość nie jest ani uprzejmością, ani serdecznością, ani empatią – choć z tymi fenomenami współwystępuje. Co więcej, ze względu na swą siłę oddziaływania ma istotne znaczenie dla projektowania systemów sztucznej inteligencji, na przykład takich, które byłyby używane w zarządzaniu, administracji publicznej czy systemie edukacji. Zatem to nie tyle w temacie!

Twierdzimy, że życzliwość nie jest ani uprzejmością, ani byciem miłym, ani empatią. Wspierając się Etyką Nikomachejską Arystotelesa przyjmujemy, że istotą życzliwości jest dbanie o dobro drugiej osoby: dokładnie o to, co jest właśnie dla tej osoby dobre.
Rodzic może być życzliwy dla dziecka, silnie motywując je do podejmowania działań, które służą jego rozwojowi — niezależnie od tego jednak, może być momentami nieuprzejmy. Podobnie urzędnik, załatwiając sprawę zgodnie z interesem obywatela, może (a nawet powinien!) być życzliwy, choć nie zawsze jest uprzejmy. Oczywiście, życzliwości często towarzyszą uprzejmość, empatia i serdeczność. Nie one jednak są istotą życzliwej postawy.

Wróćmy jednak do sztucznej inteligencji i jej zastosowań publicznych, takich jak publiczna administracja. Wywołując temat życzliwości SI, natykamy się również na pobłażliwe przytakiwanie, wsparte niejawnym sarkastycznym powątpiewaniem: tak, tak, mamy przecież zasadę życzliwej interpretacji w KPA a inteligentne automaty w urzędach, zgodnie z tą zasada, będą się do nas pięknie uśmiechać.
Wiarygodność obliczeniowa SI, niezależnie od jej konkretnych zastosowań, jest mierzona często jej przejrzystością, umiejętnością wyjaśniania podejmowanych decyzji, zgodnością tych decyzji z przewidywaniami itd. Niemniej, naszym zdaniem, nie jest to droga, która zaprowadzi nas do takiej SI, jakiej człowiek, w szczególności obywatel, będzie ufał.
Co z tego, że system jest przejrzysty, jeśli nie bierze pod uwagę interesu i preferencji samego obywatela? Nie jest to strategia, która gwarantuje spełnienie oczekiwań UE w stosunku do SI. Dopiero uwzględnienie życzliwości (i stojących za nią rozwiązań technicznych), pozwoli na wypracowanie takiego modelu prawnego i funkcjonalnego SI w zastosowaniach publicznych, który spełni oczekiwania pokładane w wiarygodnej SI.

Życzliwość SI to nie jest uśmiech robota upodabniającego się do człowieka (taki robot zresztą, im bardziej przypomina człowieka, tym bardziej budzi jego nieufność). SI, jeśli ma być wiarygodna w zastosowaniach publicznych, to powinna być życzliwa, a to oznacza, że powinna brać pod uwagę dobro obywatela.

Zapraszamy do dyskusji – Bartłomiej Skowron i Marcin Rojszczak.

Zaszufladkowano do kategorii Etyka, Filozofia informatyki, Retoryka, Światopogląd informatyczny | 37 komentarzy

Turingowskie inspiracje… czyli o myśleniu ludzi i maszyn raz jeszcze

Szanowni Państwo!

Proponuję podjąć raz jeszcze dyskusję na temat omawiany w blogu co najmniej dwukrotnie…
Polecam, na przykład, dyskusję z roku 2012, a także nieco nowszą, z roku 2019.

W obydwu rozmowach inspirowaliśmy się niezwykle ważnym dla filozofii umysłu tekstem Alana Turinga pt. „Maszyny liczące a inteligencja”. W tekście tym znajdujemy, po pierwsze, oryginalne sformułowanie testu na inteligencję maszyn, nazywanego dziś testem Turinga, po drugie jednak, szereg polemicznych uwag Turinga do wysuwanych w jego czasach argumentów na rzecz niemożności skonstruowania maszyn myślących. Są one zawarte w rozdziale 7 wzmiankowanego tekstu.

Proponuję wziąć te uwagi za punkt wyjścia blogowej dyskusji.

Czy argumenty przytaczane przez Turinga zachowały swoją aktualność? Które z nich są najsilniejsze? Które z nich Turing odpiera w sposób przekonywujący, a które opierają się jego krytyce? Czy możemy dzisiaj, z perspektywy współczesnych dokonań informatyki, wysunąć argumenty inne lub rozbudować jakoś polemikę Turinga?

Wszelkie wypowiedzi mile widziane. Również takie, które wychodzą poza dość wąską definicję myślenia jako czynności możliwej do stwierdzenia za pomocą (werbalnego i behawioralnego zarazem) testu Turinga.

Na rozgrzewkę proponuję  fragment mojego dawnego komentarza z dyskusji prowadzonej w roku 2012.

<<
Interesujący nas temat, czyli [samo myślenie] oraz [hipotetyczne myślenie maszyn], jest niezwykle trudny, ponieważ nie za bardzo potrafimy wyjaśnić jednoznacznie, a także zgodzić się co do tego, cóż to znaczy „myśleć”.
Oczywiście nie tylko my. Nad problemem tym łamią sobie głowy (i pióra) wybitni specjaliści: psychologowie, neurobiologowie, filozofowie itd…
Sam Turing, podobnie jak będący dla niego pewnego rodzaju inspiracją psychologowie-behawioryści (nie badajmy myślenia jako takiego, badajmy korelacje między bodźcami i reakcjami organizmu), próbował ten temat ominąć – próbował bowiem utożsamić myślenie z jego zewnętrznymi przejawami (taka jest w istocie intencja testu Turinga).
Dla Turinga zatem i godzących się z nim dyskutantów “myśleć” to chyba tyle co „skutecznie rozwiązywać problemy (którą to skuteczność daje się jakoś mierzyć)” .
Dla anty-turingowców z kolei „myśleć” to coś więcej, a mianowicie „przeżywać (świadomie) pewne wewnętrzne stany, jak poczucie zrozumienia czy satysfakcji z uzyskanego rozwiązania, które to stany niezwykle trudno opisać obiektywnie”.
Ci pierwsi łatwiej zapewne zgodzą się na możliwość skonstruowania myślących maszyn, ci drudzy trudniej.
Do tego wszystkiego dochodzi jeszcze jedna sprawa. Otóż za odpowiedzią pozytywną na interesujące nas pytanie („Tak. Maszyna może myśleć.”) kryje się dość często czyjeś przekonanie (i podejrzenie zarazem), że umysł ludzki jest w istocie skomplikowaną maszyną, a pozornie tylko wydaje się, że nią nie jest.
Czy nie tak właśnie – mniej lub bardziej świadomie – mniemał Alan Turing (zauważmy, że pada w tekście kilkukrotnie dziwne określenie „ludzka maszyna cyfrowa”)?
Dla osób o takim nastawieniu zupełnie naturalne wydaje się, że maszyny będą mogły kiedyś dorównać mechanicznemu (z założenia) umysłowi. A zatem będą mogły myśleć.
Osoby odpowiadające przeciwnie zakładają z kolei, że „umysł nie jest mechaniczny”, a przyczyną jego nie-mechaniczności może być np. specyficzne fizyczne tworzywo umysłu-mózgu (umysł zatem to nie tylko program, ale nadto substancja ów program implementująca) albo nie-materialna dusza jakoś sprzężona z mózgiem.
Ja proponuję, choćby na chwilę, przyjąć jeszcze inny punkt widzenia.
Otóż, być może, bardziej istotne od pytania o to “czy maszyny mogą myśleć?”, jest pytanie o to “czy maszyny pozwolą nam zrozumieć lepiej, na czym polega ludzkie myślenie?”. Być może taki właśnie najgłębszy sens – tj. chęć lepszego zrozumienia fenomenu ludzkiej myśli – ma konstruowanie i analizowanie maszyn (informatycznych) do sztucznej realizacji czynności poznawczych.
>>

Serdecznie zapraszam do swobodnej rozmowy!

Paweł Stacewicz

Zaszufladkowano do kategorii Bez kategorii, Dydaktyka logiki i filozofii, Filozofia informatyki, Filozofia nauki, Światopogląd informatyczny | 57 komentarzy

Era informacji, informatyczna, cyfrowa…
Czy te i inne „informacyjne” etykiety dobrze pasują do naszych czasów?

Obecnym wpisem chciałbym odświeżyć przedwakacyjną dyskusję pt. „Czy żyjemy w erze informacji i co to znaczy?”.  Temat wydaje się banalny, a odpowiedź oczywista: tak, żyjemy w erze informacji, a sama informacja, głównie za sprawą informatyki, ma coraz częściej postać cyfrową.

Oto próbka tekstu naukowego, w którym termin „era cyfrowa” jest traktowany jako zupełnie oczywista nazwa naszych czasów:

<< Podstawową charakterystyką ery cyfrowej jest bezprecedensowa ekspansja informacji. Począwszy od lat 80. XX wieku, wolumen zgromadzonych na świecie danych i skumulowana moc obliczeniowa podwajają się co 2–3 lata (Hilbert i Lopez, 2011). Koszt standardowej operacji obliczeniowej spada średnio o 53% rocznie (Nordhaus, 2017). Można powiedzieć, że przetwarzanie, przechowywanie i transmisja informacji odspoiły się od możliwości poznawczych ludzkiego mózgu – przed erą cyfrową to człowiek za to odpowiadał, dziś w zdecydowanej większości jest to już domeną komputerów i innych urządzeń elektronicznych. Przed 1980 r. mniej niż 1% informacji było zakodowanych w postaci cyfrowej, dziś ponad 99% (Gillings, Hilbert i Kemp, 2016).>>
Źródło:  J. Growiec, “Społeczny odbiór nauki w erze cyfrowej”, z książki Ewolucja cywilizacyjnej roli i społecznego odbioru nauki

Dyskutując powyższe kwestie kilka miesięcy temu, wiele osób wykazało zdrowy – moim zdaniem –  krytycyzm co do nazbyt pośpiesznych prób nazwania współczesności. Nazbyt pośpiesznych, bo czynionych ze zbyt bliskiej czasowej perspektywy. 
Oto kilka reprezentatywnych głosów:

1.
Uważam, że samo spojrzenie technologiczno-informatyczne może być zbyt zawężoną perspektywą spojrzenia na nasze czasy. Z pewnością jest to jeden z głównych aspektów definiujących nasze społeczeństwo, ale nie jedyny. Myślę, że nie sama informacja jest tu słowem kluczem, a bardziej jest to „globalizacja”.

2.
Czy zatem można powiedzieć, że żyjemy w erze informacji? Osobiście nie zgadzam się z tym stwierdzeniem. Aktualnie posiadamy szybszy przesył informacji, dzięki czemu możemy wykorzystać więcej zasobów, ale informacja nie zyskała większej wagi niż to było w poprzednich epokach. Moim zdaniem trafniejszym określeniem jest to, że „żyjemy w erze danych”.

3.
Nie powiedziałbym, że dzisiejsze społeczeństwo możemy nazwać „społeczeństwem informacji”, jako głównym mianem. Podobnie jak kilku moich przedmówców, nazwałbym nas prędzej „społeczeństwem dezinformacji”. Łatwość dostępu do wiedzy sprawia, że trudniej jest ją filtrować, sięgamy po najprostsze środki (wyszukiwarka Google), nie zastanawiając się, czy strona, na którą trafiliśmy jest wiarygodna. Nie mówiąc już o algorytmach, które wyświetlają nam treści zgodne z naszym światopoglądem, co prowadzi nas do mylnego wrażenia, że wszyscy na świecie myślą podobnie do nas.

4.
Chociaż wszyscy możemy się zgodzić, że komputer jest wynalazkiem definiującym w pewnym sensie nasz czas (jednak należy tutaj też uważać, ponieważ tkwimy w pewnej bańce informacyjnej środowiska informatycznego i nasza opinia może być nieobiektywna), to pozostawiłbym nazywanie obecnych czasów przyszłym pokoleniom. Może nie dostrzegamy czegoś, co było jeszcze ważniejsze dla rozwoju cywilizacji albo może robimy coś nieprawdopodobnie złego (chociażby dla środowiska) przez co zostaniemy nazwani „erą szkód”.

Potraktujmy przytoczone głosy jako sygnał wywoławczy do dalszej rozmowy…
Chociaż wybrałem głosy co najmniej wstrzemięźliwe wobec określeń typu „era informacyjna” czy „cyfrowa”, to niekoniecznie musimy te nazwy skreślać.
Argumentujmy i polemizujmy zgodnie z własnym „rozpoznaniem sytuacji”.

Serdecznie zapraszam do dyskusji – Paweł Stacewicz

Jako materiał pomocniczy proponuję następujące źródła:

♦ artykuł A. Sicińskiego: Społeczeństwo informacyjne: próba nazwania naszych czasów

♦ artykuł J. Growca: Społeczny odbiór nauki w erze cyfrowej

♦ prezentacja P Stacewicza: Informacja jako pojęcie interdyscyplinarne

Zaszufladkowano do kategorii Bez kategorii, Dydaktyka logiki i filozofii, Filozofia informatyki, Filozofia nauki, Światopogląd informatyczny | 29 komentarzy

Analog computations: continuous vs empirical

We would like to invite everyone to discuss the material  that has been presented during virtual conference Computability in Europe (5-9 July 2021).

The entire slideshow (with large sections of text from our paper draft) is available HERE.

We decided to submit it for discussion, because we are now working on a new publication devoted to analog/continuous computations, and all additional critical input, and each additional discussion will be for us very precious.

Thus, we will be grateful for any comments that may contribute both: the improvement of our text (which still is in the reviewing process), and the development of our new ideas.

To encourage you to read the whole slideshow, we put two representative (text) passages below:

Two basic (general) meanings of analogicity

When talking about analog computing, i.e. a kind of non-standard computing, there are two different (yet not necessarily separate) ways of understanding analogicity.

The first meaning, we shall call it AN-C, refers to the concept of continuity. Its essence is the generalisation (broadening) of digital methods in order to make not only discrete (especially binary) but also continuous data processing possible. On a mathematical level, these data correspond to real numbers from a certain continuum (for example, an interval of a form [0,1]), yet on a physical level – certain continuous measurable variables (for example, voltage or electric potentials).

The second meaning, we shall call it AN-E, refers to the concept of analogy. It acknowledges that analog computations are based on natural analogies and consist in the realisation of natural processes which, in the light of defined natural theory (for example physical or biological), correspond to some mathematical operations. Metaphorically speaking, if we want to perform a mathematical operation with the use of a computational system, we should find in nature its natural analogon. It is assumed that such an analogon simply exists in nature and provides the high effectiveness of computations.

In a short comment to this distinction, we would like to add that the meaning of AN-E has, on the one hand, a historical character because the techniques, called analog, which consisted in the use of specific physical processes to specific computations, were applied mainly until the 1960s. On the other hand, it looks ahead to the future – towards computations of a new type that are more and more often called natural (for example, quantum or computations that use DNA).

The meaning of AN-C, by contrast, is more related to mathematical theories of data processing (the theoretical aspect of computations) than to their physical realisations.

The categories AN-C and AN-E are not disjoint, as there are empirical computations that consist in processing continuous quantities.  As such, they are AN-E, but also fall into the AN-C category.

Empirical justification of AN-E computations

AN-E computations are closely related to the theories of empirical sciences (e.g., physics or biology). This means that specific computations of this type could neither be specified nor physically implemented without reference to a specific theory of this type.

Typically, such theories are treated as a tool for accurate description of physical reality in terms of mathematical structures and operations. Thus, their cognitive aspect is highlighted.

From the computational point of view (or more precisely: from the implementation one) they can be treated as a basis for realizing certain mathematical operations by means of physical processes described by these operations. With such an approach, a particular theory is treated as something that justifies the physical implementation of certain mathematical-algorithmic operations. It is therefore a justifying theory for a particular type of AN-E computation.

Once again, we invite everyone to discuss our slideshow — Paula Quinon & Paweł Stacewicz.

Zaszufladkowano do kategorii Bez kategorii | 2 komentarze

Między wiedzą „jak” i wiedzą „dlaczego”.
Kontekst algorytmiczny.

Jako sygnał wywoławczy kolejnej blogowej rozmowy chciałbym przywołać następujący cytat z tekstu Donalda Knutha o algorytmach:

Być może największym odkryciem będącym rezultatem wprowadzenia komputerów okaże się to, że algorytmom, jako przedmiotom badania, przysługuje niezwykłe bogactwo interesujących własności oraz to, że algorytmiczny punkt widzenia jest użytecznym sposobem organizacji wiedzy w ogólności.

Algorytmiczny punkt widzenia…
Zastosujmy go nieco węziej niż to postuluje Knuth, przyjmując, że algorytm stanowi wzorcowy (schematyczny, jednoznaczny, intersubiektywnie dostępny…) zapis wiedzy „jak”, czyli wiedzy o tym, jak rozwiązywać problemy określonego typu. Na przykład: jak znajdować pierwiastki równań kwadratowych czy diagnozować choroby układu oddechowego.
Warto napomknąć tutaj, że na polu epistemologii wiedzę „jak” odróżnia się od wiedzy „że”. Ta pierwsza ma charakter proceduralny, operacyjny, pragmatyczny (w naszym ujęciu: algorytmiczny)… ta druga zaś,  dotyczy faktów i zależności między nimi (oto przykład: Wisła jest dłuższa od Odry); ma zatem charakter deklaratywny lub opisowy.

O użyteczności algorytmów w ogólnym kontekście gromadzenia i zdobywania wiedzy dyskutowaliśmy już kilka razy, np. przy okazji wpisu Siła algorytmów czy wpisu Algorytmiczne podejście do zdobywania, zapisywania i przekazywania wiedzy….

Tym razem proponuję przyjrzeć się zagadnieniu przejrzystości poznawczej algorytmów — koncentrując się roboczo na kontekście informatycznym, a dokładniej na metodach i systemach sztucznej inteligencji (SI). Nie znaczy to oczywiście, że w dalszej rozmowie nie możemy wychodzić poza ten roboczy kontekst!

Otóż we współczesnych systemach SI, a więc systemach służących do automatyzacji czynności poznawczych człowieka (takich jak wnioskowanie czy komunikacja językowa), coraz częściej stosuje się algorytmy (samo)uczące się. Mają one status schematów pomocniczych, a więc schematów „drugiego poziomu”, które prowadzą do udoskonalenia algorytmu właściwego, odpowiedzialnego za działanie systemu.
Przykładowo: jeśli system służy do stawiania diagnoz medycznych, to algorytm właściwy mówi „jak przechodzić od obserwowanych objawów do stwierdzenia takiej a takiej choroby”, natomiast algorytm uczenia się ma na celu wcześniejsze dopasowanie pewnych parametrów algorytmu właściwego (być może nawet: utworzenie go od podstaw), tak aby ten ostatni działał poprawnie.
Dopowiedzmy koniecznie, że sporo współczesnych systemów uczących się ma postać sztucznych sieci neuronowych. W ich przypadku algorytmy uczenia się są pewnymi (inspirowanymi biologicznie) schematami samoorganizacji tych sieci – samoorganizacji, która polega na „dostrajaniu” wag połączeń międzyneuronalnych, a niekiedy też pewnych parametrów sztucznych neuronów.

Mając na uwadze rozróżnienie między algorytmami działania (jak rozwiązać problem, jak podjąć decyzję itp.) oraz algorytmami uczenia się (jak utworzyć lub udoskonalić algorytm właściwy), można postawić zagadnienie przejrzystości poznawczej tych pierwszych.
Chociaż stanowią one wiedzę „jak” i są podstawą efektywnych działań systemu, to w konkretnych przypadkach można się zastanawiać, w jakim stopniu wiedza ta ma status wiedzy „dlaczego”?
Przykładowo: wiemy, jak system stawia diagnozy i widzimy ich poprawność, nie do końca jednak rozumiemy, dlaczego są to takie właśnie diagnozy. Innymi słowy: system ma taką strukturę i taki algorytm działania (np. jest on bardzo złożony lub zawiera pewne techniczne parametry niskiego poziomu), że nie dostarcza wprost dobrych wyjaśnień podejmowanych przez siebie decyzji. Być może nawet, wyjaśnienia takie są w ogóle nieosiągalne.
Mówiąc obrazowo, system taki przypomina nieprzejrzystą poznawczo czarną skrzynkę.

Wobec zarysowanych trudności chciałbym poddać pod dyskusję następujące pytania:

Czy problem nieprzejrzystości poznawczej jest dla informatyków istotny?
Jeśli tak, to jakich systemów/algorytmów dotyczy?
Jakie czynniki ten problem wywołują i potęgują?
Czy znacie Państwo jakieś sposoby przezwyciężania tego problemu?
A może: w przypadku systemów informatycznych wiedza typu „dlaczego” jest nie do końca potrzebna, bo wystarczy skuteczna w praktyce wiedza „jak”?

Zachęcam do swobodnej rozmowy na powyższe tematy – z możliwością wykroczenia poza nie!

Na rozgrzewkę zaś przytaczam historyczny komentarz stałego bywalca Cafe Aleph, niejakiego k-ma, który dotyczył podobnych kwestii (komentarz ten delikatnie przeredagowałem):

<< Wobec współczesnych dokonań informatyki możliwa jest sytuacja, w której wiedza naukowa będzie mogła być efektywnie poszerzana przez „uczące się” automaty — korzystające ze sformalizowanych procedur tak, że plon tej zalgorytmizowanej działalności będzie racjonalny, to znaczy komunikowalny i intersubiektywnie sprawdzalny przez inne automaty korzystające z algorytmów na coraz to nowszych „jakościowo poziomach” — ALE wiedza ta nie będzie mogła się przełożyć na „wiedzę indywidualną” ludzi korzystających z owych automatów. Badacze będą mogli zyskać czasem wiedzę „że” i „jak”, ale nie wiedzę „dlaczego”. >>

Jako materiały pomocnicze do dyskusji (zob. też linki wyżej) proponuję:

tekst Donalda Knutha o roli algorytmów w informatyce
tekst Pawła Stacewicza o metodzie algorytmicznej
slajdy Pawła Stacewicza do wykładu nt, informacji i wiedzy

Serdecznie zapraszam do dyskusji – Paweł Stacewicz

Zaszufladkowano do kategorii Dydaktyka logiki i filozofii, Filozofia informatyki, Filozofia nauki, Światopogląd informatyczny, Światopogląd racjonalistyczny | 19 komentarzy

Czy żyjemy w erze informacji i co to znaczy?

Do obecnej dyskusji zapraszam przede wszystkim (choć nie tylko!) studentki i studentów wydziału WEiTI Politechniki Warszawskiej, z którymi prowadzę zajęcia z filozofii informacji.
Na kolejne zajęcia zaplanowaliśmy debatę, którą proponuję rozpocząć wstępnie, a potem kontynuować :), w blogu. Mam nadzieję, że dołączą do nas również inne osoby, w tym stali bywalcy Cafe Aleph.

Tematem debaty jest era informacyjna, a dokładniej znaczenie i zasadność stwierdzenia, że „żyjemy w erze informacji„.
Ze stwierdzeniem tym korespondują rożne inne określenia, bardzo chętnie stosowane przez kulturoznawców, socjologów i filozofów.
Oto szczególnie wyraziste przykłady: społeczeństwo informacyjne (dopełniane zwykle  przymiotnikiem: postindustrialne), społeczeństwo sieciowe (mamy tu podkreślenie roli  Internetu) czy epoka cyfryzacji (uwypuklające rolę wynalazku komputera cyfrowego i powiązanych z nim technologii).

Dlaczego jednak  informację akurat, a nie coś innego, mamy uznać za kategorię definiującą nasze czasy?

Czy przesądza o tym wszechobecność urządzeń i technologii do przetwarzania informacji?

Czy chodzi może o skuteczne zastosowania pojęcia informacji w naukach (biologii, psychologii, fizyce…), które tworzą dzięki temu pojęciu pewien nowy obraz świata?

A może idzie o to, że coraz częściej świat realny zastępuje się wirtualnym, a więc w jakimś sensie informacyjnym?

A może zmienił się dominujący wzorzec aktywności ekonomiczno-gospodarczej i niemal wszystko w tej sferze zależy dziś od pozyskiwanych i posiadanych informacji?

Proszę Państwa, potraktujmy ten katalog pytań jako sygnał wywoławczy do dyskusji, która może się potoczyć również w innych kierunkach!
Wszelkie głosy MILE widziane…

Jako materiał pomocniczy do dyskusji proponuję następujące teksty i prezentację:

♦  artykuł A. Sicińskiego Społeczeństwo informacyjne: próba nazwania naszych czasów

♦  artykuł T. Goban-Klasa Teoretycy społeczeństwa informacyjnego

♦  prezentacja z ostatniego wykładu (wzbogacona o kilka nowych slajdów)

Serdecznie ZAPRASZAM do dyskusji wszystkich Czytelników bloga — Paweł Stacewicz.

Zaszufladkowano do kategorii Dydaktyka logiki i filozofii, Filozofia informatyki, Filozofia nauki, Światopogląd informatyczny | 26 komentarzy

O pięknie pojęć i teorii naukowych

Zachęcony niezwykle interesującą wymianą myśli ze studentami Wydziału Fizyki PW zdecydowałem się wywołać w blogu dyskusję na temat piękna w nauce. Przede wszystkim w matematyce i fizyce.
Zamiast klasycznego wstępu przedstawiam niżej kilka reprezentatywnych głosów z zajęć, które były wpisywane na wykładowym czacie podczas referatu o humanistycznych aspektach fizyki. Są to oczywiście pewne wyrywkowe i spontaniczne spostrzeżenia, które możemy niżej dowolnie komentować i rozwijać. Mam nadzieję, że będą one stanowić dobry impuls do rozmowy.

1.
Dlaczego naukowcy posługują się pewną intuicją związaną dość mocno z poczuciem estetycznego piękna teorii naukowych? Dlaczego uznają niektóre z nich za piękniejsze, a tym samym warte większego zainteresowania?
Czasem piękno może oznaczać prostotę — to, że daną teorię da się sprowadzić do podstawowych form i operacji matematycznych. Czasem jednak niesamowicie przeładowana matematyką teoria może wydać się piękna właśnie dlatego, że zdołała opisać pewien nowy lub  nierozwiązany dotychczas problem. Zatem intuicja i poczucie estetyki u naukowca mogą być przydatne, by rozpoznać to, co ma potencjał do okazania się dobrą teorią. 

2.
Wydaje mi się, że piękno to pochodna biologicznego instynktu, który podpowiada nam, co jest piękne; podpowiada po to, by móc dokonać właściwego wyboru z punktu widzenia przetrwania (np. przy wyborze partnera/ki).

3.
A może piękno teorii jest wynikiem zespołu cech, które odpowiadają za „skuteczność” teorii… M. Heller w jednej ze swoich książek przytacza porównanie, jakiego użył S. Weinberg, zestawiając piękno teorii fizycznej z pięknem konia sportowego. Doświadczony trener rozpozna konia o odpowiednich cechach; już na pierwszy rzut oka potrafi wstępnie określić jego możliwości. Dobra teoria, podobnie jak koń sportowy, posiada zestaw cech, które zapewniają jej skuteczność.

4.
Czy piękno to swojego rodzaju idealność? Czy np. fuzję jądrową można nazwać pięknym źródłem energii (zero odpadów, CO2 itp.)? Podobne określenie możemy zastosować do teorii fizycznej, która wydaje się być idealna… W sumie to dość sensowna definicja piękna. W życiu też pięknym nazywamy, to co instynktownie uznajemy za idealne.

5.
Według mnie mieszanie piękna i prawdy jest błędne i nie powinno się na gruncie naukowym dyskutować o tym, czy jakaś nauka jest piękna, czy brzydka, bo prawda jest obiektywna, a wrażenia estetyczne – subiektywne.

A zatem: na czym miałoby polegać piękno zmatematyzowanej teorii naukowej? Na jej prostocie, symetrii, wewnętrznym uporządkowaniu, idealności…? Czy kryteria tego rodzaju  można precyzyjnie sformułować, nie uciekając się do „miękkich” porównań i metafor?

Serdecznie zapraszam do rozmowy – Paweł Stacewicz.

Zaszufladkowano do kategorii Dydaktyka logiki i filozofii, Filozofia nauki, Światopogląd racjonalistyczny | 35 komentarzy

Racjonalistyczny optymizm Hilberta, Gödla, Turinga

Obecny wpis jest moim głosem w dyskusji na międzyuczelnianym (IFiS PAN, IF UW, środowisko filozoficzne PW) posiedzeniu seminarium pt. „Ku filozofii informatycznej”, 17.XI.2020.  Dwa główne na tym posiedzeniu odczyty, profesorów Pawła Polaka („Filozofia informatyki, o jakiej nie śniło się  informatykom”)  i Kazimierza Trzęsickiego („Filozofia informatyczna i paradygmat Turinga”), mają pewien wspólny wątek — pankomputacjonizm, do którego chciałbym się odnieść w tych uwagach jako do szczególnie wyrazistej gałęzi filozofii informatycznej. Dobre tło dla tych uwag stanowi wprowadzenie do seminarium, autorstwa doktora Pawła Stacewicza.

§1. Anty-limitatywne  twierdzenie Gödla, 1936, ilustrujące epistemiczny pankomputacjonizm jako gałąź filozofii informatycznej.

Posługując się terminem „pankomputacjonizm epistemiczny” należy wyjaśnić, od jakiego innego kierunku ma go odróżniać ten przymiotnik.  Rzecz jest warta pilnej uwagi, bowiem ów inny kierunek jest rozległymi frapującym działem filozofii informatycznej.  Proponuje określać go mianem pankomputacjonizm ontyczny, wkracza on bowiem w kwestię natury bytu glosząc myśl że podstawowym tworzywem świata nie są elementarne cząstki materii lecz bity czyli elementarne cząstki informacji.  Wyraża tę myśl maksyma Johna Wheelera it from bit (można to oddać jako „byt z bitów”).  Cała rzeczywistość jest według tej koncepcji gigantycznym komputerem cyfrowym przetwarzającym bity wedle algorytmu kierującego ewolucją wszechświata.

Jakkolwiek fantastycznie brzmi ta koncepcja, zasługuje ona na uwagę, skoro opowiada się za nią grupa tak wybitnych fizyków kwantowych i  kosmologów, jak  omawiany w odczycie prof. Trzęsickiego Konrad Zuse,  wspomniany wyżej John Wheeler, a także Stephen Wolfram, Ed Fredkin, Frank Tipler i inni.

Uznawszy, że skierowanie do tekstu Trzęsickiego pozwala wspomnieć w paru tylko słowach  komputacjonizm ontyczny,  przechodzę do kwestii pankomputacjonizmu w wersji epistemicznej.  Oto doniosłe stwierdzenie Gödla, dobrze się nadające na drogowskaz ku tej części filozofii informatycznej, jaką jest epistemiczny pankomputacjonizm.

Der Übergang zur Logik der nächst höheren Stufe bewirkt also nicht bloß, daß gewisse früher unbeweisbare Sätze beweisbar zu werden, sondern auch daß  unendlich viele der schon vorhandenen Beweise außerordentlich stark abgekürzt werden können. — „Über die Lange von Beweisen”

Powiada w tym ustępie Gödel, że przejście do wyższego rzędu logiki powoduje nie tylko to, że dadzą się dowieść pewne twierdzenia dotąd niedowodliwe, lecz także to, że nieskończenie wiele już istniejących dowodów ulega nadzwyczajnemu skróceniu.  Ciekawą tego egzemplifikacją w praktyce matematycznej jest w aksjomatyce Peano przejście od aksjomatu indukcji pierwszego rzędu do sformułowania w logice drugiego rzędu.

Dowód w rozumieniu tak Gödla jak  iHilberta jest to dowód sformalizowany, a więc wykonalny  lub sprawdzalny dla maszyny cyfrowej. Znaczy to, że każdy problem matematyczny da się rozwiązać algorytmicznie czyli obliczeniowo. W tym sensie ów pogląd Gödla zasługuje na określenie pankomputacjonizm, a przydawka epistemiczy odróżnia go od ontycznego.

Algorytmiczne rozwiązywanie kolejnych  problemów poprzez wspinanie się na coraz wyższe rzędy logiki  jest wymowną  ilustrację fenomenu poznawczego, jakim jest twórcza konceptualizacja poprzez postulaty znaczeniowe (meaning postulates w sensie Carnapa 1947 ).  Szczególnie ważnym ważnym dla postępu nauki środkiem są  aksjomaty w teoriach sformalizowanych.  Zachodzi to także w rozważanym przykładzie Gödla ponieważ każdy nowy rząd logiki jest określany przez swoiste dlań aksjomaty.

Tenże przypadek, ujawniając dobitnie doniosła i niezbywalną rolę filozofii w informatyce, harmonizuje z  wypowiedzią prof.Polaka, że „filozofia okazuje się dla przyszłości informatyki równie ważna co umiejętności techniczne i ścisła wiedza”. Istotnie, żeby informatyka  była zdolna do algorytmicznego rozwiązywania problemów w tak wydajny sposób, musi przyjąć ontologię platońską w sensie istnienia uniwersaliów pojętych jako  zbiory w sensie teorii mnogości.  Antyplatońska filozofia nominalizmu, np. reizm Kotarbińskiego, jest w tym względzie bezradna.

Twórcza konceptualizacja czyli inwencja pojęciowa to czynnik fundamentalny,   obecny  na każdym kroku  postępu wiedzy. Spektakularnym przykładem takiej odkrywczości jest  pojęcie zera. Poświęca mu wiele uwagi odczyt Trzęsickiego, poprzestanę więc na zauważeniu, że bez obecności tego obiektu  w świecie liczb nie byłoby nawet najprostszych algorytmów czterech działań arytmetycznych. Gdyby przyjąć filozofię, które nie dopuszcza takich bytów jak zero, nigdy byśmy się nie doczekali  maszyny Turinga.

Optymistyczny  racjonalizm Gödla buduje się na założeniu, że gdy do rozwiązania jakiegoś problemu  brak nam algorytmu, to należycie usilna praca inwencji pojęciowej doprowadzi do znalezienia pojęć, które po sprecyzowaniu  przez aksjomatyzację oraz sformalizowaniu teorii aksjomatycznej  dostarczy potrzebnego algorytmu.

§.2. Racjonalistyczny optymizm Gödla  a stanowiska Hilberta  i Turinga

§2.1.  Moje propozycje w tej kwestii znajdują się m.in.  w następujących artykułach, dostępnych w elektronicznych wersjach periodyków i w bazach danych po wklejeniu w wyszukiwarce całego tytułu.

Does Science Progress towards Ever Higher Solvability through Feedbacks between Insights and Routines?Studia Semiotyczne„, tom 32 nr 2, 2018. Odcinki 1.4,  2.2, 3.1,  3.2, 5.1, 5.2.

Jako komentarz do zwrotu Feedbacks between Insights and Routines  niech posłużą dwie wypowiedzi koryfeuszy informatyki.  Pierwsza pochodzi od Gregory Chaitina, druga od Donalda Knutha. Chaitin wyjaśnia, co nas upoważnia do epistemicznego pankomputacjonizmu  w matematyce pomimo Gödlowskiego dowodu jej niezupełności.

Gödel’s own belief was that in spite of his incompleteness theorem there is in fact no limit to what mathematicians can achieve by using their intuition and creativity instead of depending only on logic and the axiomatic method. He believed that any important mathematical question could eventually be settled, if necessary by adding new fundamental principles to math, that is, new axioms or postulates. Note however that this implies that the concept of mathematical truth becomes something dynamic that evolves, that changes with time, as opposed to the traditional view that mathematical truth is static and eternal. […]  In discovering and creating new mathematics, mathematicians do base themselves on intuition and inspiration, on unconscious motivations and impulses, and on their aesthetic sense, just like any creative artist would.

Z kolei, Knuth zwraca uwagę, że  osiągnięte dzięki twórczej intuicji algorytmy pomagają  tejże intuicji  docierać do  bogactwa interesujących własności obiektów matematycznych.

Być może największym  odkryciem będącym rezultatem wprowadzenia komputerów okaże się to, że algorytmom, jako przedmiotom badania, przysługuje niezwykłe bogactwo interesujących własności oraz to, że algorytmiczny punkt widzenia jest użytecznym sposobem organizacji wiedzy w ogólności.  […] ˙Najbardziej wartościowym elementem edukacji naukowej czy technicznej są służące ogólnym celom narzędzia umysłowe, które będą służyły przez całe życie.  Szacuję, że język naturalny i matematyka są najważniejszymi takimi narzędziami, a informatyka stanowi trzecie narzędzie.

Tę myśl Knutha rozwija P.Stacewicz we wpisie „Algorytmiczne podejście do zdobywania, zapisywania i przekazywania wiedzy”, który następuje po obecnym.

§2.2. Inną moją pozycją, która traktuje szerzej o zagadnieniach poruszanych w obecnym tekście jest artykuł: The progress of science from a computational point of view: the drive towards ever higher solvability – „Foundations of Computing and Decision Sciences„, Vol.44, No~1, 2019. Odcinki  3 i 4.

Tę optymistyczną myśl, że  dla każdego matematycznego problemu istnieje w  0biektywnym świecie jestestw matematycznych rozwiązujący go algorytm, do którego zdoła dotrzeć po jakimś  czasie myśl ludzka (o ile starczy na to czasu trwania cywilizacji),  analizuje wszechstronny, a  kończący się  znakiem zapytania, fragment tekstu  Pawła Stacewicza  zatytułowany „A Discussion of Marciszewski’s Optimistic Realism” w książce „Interdisciplinary Investigations into the Lvov-Warsaw School” (redakcja A.Drabarek, J.Woleński, M.Radzki), Palgrave 2019.

Zdobywamy głębszy wgląd w powyższą myśl Gödla, biorąc pod uwagę  jego odwoływanie się do fenomenologii Husserla w próbach uzasadnienia epistemicznego optymizmu. Ujawnia się wtedy  zakorzenienie tej kwestii  w metafizyce, co nie rokuje szybkiego rozwiązania. Stanowi jednak atrakcyjne wyzwanie dla badaczy, których nie odstrasza ryzyko metafizycznych spekulacji.

Zaszufladkowano do kategorii Filozofia informatyki, Filozofia nauki | 20 komentarzy

Algorytmiczne podejście do zdobywania, zapisywania i przekazywania wiedzy. Pożądane czy szkodliwe?

Niniejszy wpis kieruję przede wszystkim, choć nie tylko, do studentów wydziału WEiTI Politechniki Warszawskiej, z którymi mam obecnie zajęcia filozoficzno-informatyczne.
W trakcie tych zajęć poruszyliśmy problem, który był dyskutowany na blogu już kilkukrotnie (zob. np. tutaj), ale wciąż wydaje mi się wart dalszej rozmowy. Chodzi o metodologiczną przydatność pojęcia algorytmu – pojęcia, które znamy przede wszystkim z informatyki.

Czy algorytmizacja, a więc jakiegoś rodzaju schematyzacja i automatyzacja, są w nauce czymś pożądanym? Czy wiedza zapisana, ale także przekazywana, w postaci algorytmicznej, może stymulować rozwój nauki? A może jest inaczej: zbytnia algorytmizacja powoduje, że w nauce i  edukacji zaczyna brakować inwencji i kreatywności?

Można też spytać szerzej: czy podejście algorytmiczne, które przeniknęło do naszej kultury głównie za sprawą wynalazku komputera, wywiera jakiś istotny wpływ na tęże kulturę – wpływ pozytywny lub negatywny? Mam tu na myśli kulturę pojętą całościowo, a nie tylko technicznie…

Bardzo proszę o swobodne wypowiedzi nawiązujące do powyższych pytań; poza które można oczywiście wykraczać :).

Jako lektury wprowadzające  do dyskusji proponuję:

tekst Donalda Knutha o roli algorytmów w informatyce
tekst Pawła Stacewicza o metodzie algorytmicznej

Oto kilka zaczerpniętych z tych prac cytatów:

Knuth:
Być może największym odkryciem będącym rezultatem wprowadzenia komputerów okaże się to, że algorytmom, jako przedmiotom badania, przysługuje niezwykłe bogactwo interesujących własności oraz to, że algorytmiczny punkt widzenia jest użytecznym sposobem organizacji wiedzy w ogólności.

Knuth:
Zacytujmy ponownie George’a Forsythe’a: „Najbardziej wartościowym elementem edukacji naukowej czy technicznej są służące ogólnym celom narzędzia umysłowe, które będą służyły przez całe życie. Szacuję, że język naturalny i matematyka są najważniejszymi takimi narzędziami, a informatyka stanowi trzecie narzędzie” (Forsythe 1959).

Knuth:
Próba sformalizowania czegoś w postaci algorytmu prowadzi do głębszego zrozumienia niż ma to miejsce, gdy po prostu próbuje się daną rzecz pojąć w sposób tradycyjny.

Stacewicz:
Można pokusić się nawet o stwierdzenie, że dana dyscyplina uzyskuje postać dojrzałą wówczas, gdy powstaje w jej obrębie pewien schematyczny rachunek pozwalający z powodzeniem stosować metodę algorytmiczną.

Stacewicz:
Do zalet metody algorytmicznej, należy niewątpliwie wiedzotwórczość, która przejawia się na dwóch poziomach: a) każde zastosowanie algorytmu do nowych danych skutkuje nową wiedzą (rozwiązaniem nowego problemu), b) trafnie dobrany zbiór algorytmów ułatwia penetrację danej dziedziny na nowym jakościowo poziomie (na niższym poziomie dokonała się już automatyzacja).

Serdecznie zapraszam do rozmowy, w której oczywiście sam chętnie wezmę udział.

Paweł Stacewicz.

Zaszufladkowano do kategorii Dydaktyka logiki i filozofii, Filozofia informatyki, Filozofia nauki, Światopogląd informatyczny | 25 komentarzy