Logika w zastosowaniu do spraw społecznych:
#1. Kluczowa rola Zasady Niesprzeczności

[…]  Awersja logiki do absurdu wyraża się w jej podstawowej maksymie: logicznej Zasadzie Niesprzeczności.  Jest ona tak kluczowa, że od niej zaczynamy  rozmowę o społecznych zastosowaniach wybranych elementów logiki.

Wciąż doświadczamy tego, że aby skutecznie działać trzeba opierać decyzje na wiarogodnych sądach. Takich, w które rozsądnie jest wierzyć, czyli mieć racjonalne o ich prawdziwości przekonanie (słów ,,wiara” i ,,przekonanie” używa się tu zamiennie). Wiemy też z  codziennych doświadczeń, co to znaczy, że w jedne sądy się wierzy, inne odrzuca, a do jeszcze innych podchodzi się z powątpiewaniem lub je zawiesza.

Żeby móc racjonalnie wierzyć w jakiś sąd, konieczne jest jedno z dwojga: powinien on być oczywisty, jak przysłowiowe 2+2=4 jest oczywiste dla umysłu; czy jak to, że słońce tu teraz świeci narzuca się nieodparcie zmysłom. A jeśli sam w sobie sąd nie jest oczywisty, to powinien być uzasadniony przez jakieś oczywiste przesłanki, czyli z tych przesłanek wynikać.W mechanizmie uzasadnień logiczna Zasada Niesprzeczności — w skrócie ZNs — stanowi, na równi ze stosunkiem wynikania czynnik kluczowy. […]

Artykuł podsumowany jest limerykiem:

Alicja znana z bystrości
nie dopuszczała sprzeczności.
Czy król w nią wpadł, czy królowa,
Alicji słyszał wnet słowa:
,,mylisz się, proszę Waszmości!”

Opublikowano Bez kategorii | 1 komentarz

Dwa szkice o platonizmie pragmatycznym
w Szkole Lwowsko-Warszawskiej

Przekonałem się w rozmowach,  że termin pragmatyczny platonizm budzi nieraz    zdziwienie.  To  zdziwienie  nie musi dziwić, gdy ma się na uwadze, że wielu osobom platonizm kojarzy się z jakąś wybujałą  metafizyczną  spekulacją, nawet z mistycyzmem, podczas gdy pragmatyzm, to  trzeźwa postawa praktyczna.  Jak platonizm może być trzeźwy, a pragmatyzm połączony z wyobraźnią, można się przekonać, sięgając do dość obfitej na ten temat literatury zagranicznej z  filozofii nauki (Quine, Gödel etc.).

Okazuje się, że pewne nurty pragmatycznego platonizmu mamy też ,,pod ręką” — w filozoficznej Szkole Lwowsko-Warszawskiej. Opowiadają o tym w skrócie dwa szkice, dopełniające się treściami;  dlatego dwa, że każdy przeznaczony na okoliczność innej dyskusji seminaryjnej (w IFiS PAN i w Instytucie Filozofii UW).  Kto chce się przekonać, czy nie jest przypadkiem z urodzenia pragmatycznym platonikiem,  a może odwrotnie, urodzonym przeciwnikiem tej postawy (jak np. Tadeusz Kotarbiński i jego uczniowie),  może to uczynić małym kosztem (10 minut lektury).  A jeśli zechce skomentować któryś szkic na łamach tego blogu — pod obecnym wpisem — będzie miał  reakcję  autora i jego wdzięczność za wspólnotę zainteresowań.  Oto tytuły i lokalizacje obu tekstów.

Pragmatyczny platonizm w Szkole Lwowsko-Warszawskiej. Jego stosunek do zagadnienia intuicji umysłowej.  — http://calculemus.org/CA/fil-nauki/2017/str-marc-pan.pdf

Pragmatyczny platonizm w Szkole Lwowsko-Warszawskiej. ,,Inimicus Plato sed magis inimica falsitas”  http://calculemus.org/CA/fil-nauki/2017/str-marc-uw.pdf

Opublikowano Bez kategorii | 1 komentarz

W jakim sensie umysł jest algorytmiczny?

Niniejszym wpisem chciałbym zachęcić studentów wydziału Fizyki PW (ale także: inne osoby) do rozmowy na temat algorytmiczności ludzkiego umysłu. Hasło wywoławcze dyskusji – W jakim sensie umysł jest algorytmiczny? – sugeruje, że pod pewnymi przynajmniej względami ludzkie czynności poznawcze (a szerzej: psychiczne) mają charakter algorytmiczny.
Wydaje się to oczywiste. Zarówno w życiu codziennym, jak i w nauce, aż roi się od przepisów, schematów, instrukcji, precyzyjnych wzorów etc… Ponadto, za pomocą programów komputerowych udaje się realizować sztucznie coraz więcej czynności, które wymagają od człowieka wysiłku umysłowego: począwszy od czynności percepcyjnych (rozpoznawanie obiektów), a skończywszy na dowodzeniu matematycznych twierdzeń. Naukową podstawę dla tak pojętej algorytmizacji zapewniają wielokrotnie już omawiane w tym blogu badania nad sztuczną inteligencją (zob. np. wpis pt. Sztuczna inteligencja. Wyzwanie czy zagrożenie?).

Czy mimo tego wszystkiego umysł jest algorytmiczny w najszerszym możliwym sensie? Czy za pomocą algorytmów i programów komputerowych można opisać (w celu sztucznej realizacji) każdy typ umysłowej aktywności: wolicjonalnej, emocjonalnej, świadomej, twórczej? Jakie algorytmy są do tego niezbędne? Czy tylko takie, które dają się sformalizować jako programy dla uniwersalnej maszyny Turinga? Czy może potrzeba czegoś więcej?

W naszej rozmowie – oprócz rozważania powyższych pytań – możemy zastanawiać się także nad sensem dwóch kluczowych dla niej słów: umysłu i algorytmu.
Co oznaczają?
Czy pewne ich sposoby rozumienia (np. „umysł jako system świadomy”, „algorytm jako schemat procedury możliwej do wykonania przez maszynę Turinga”) nie wykluczają możliwości zalgorytmizowania pewnych kluczowych funkcji umysłu?

Zdaję sobie sprawę, że wywołuję temat-rzekę, ale spróbujmy do tej rzeki dopłynąć własnym szlakiem…

Ponieważ wpis zaanonsowałem jako powiązany z zajęciami dla studentek/ów z PW, pozwalam sobie zalinkować ich zwięzłe opinie nt. algorytmiczności umysłu. Opinie te dyskutowaliśmy wprawdzie „na żywo”, ale nic nie stoi na przeszkodzie, by niektóre głosy powtórzyć lub rozwinąć w blogu.
Oto niezbędny LINK.

Serdecznie zapraszam do rozmowy – Paweł Stacewicz.

Opublikowano Dydaktyka logiki i filozofii, Filozofia nauki, Światopogląd informatyczny | Otagowano , , | 13 komentarzy

Nieskończoność potencjalna w informatyce

Być może znajdą się wśród czytelników bloga osoby chętne do (kolejnej już) dyskusji o nieskończoności w informatyce. Dobrą okazją po temu jest tekst, który przygotowuję obecnie do tomu podsumowującego prace V Konferencji pt.  Filozofia Matematyki i Informatyki.

W tekście podejmuję zagadnienie nieskończoności potencjalnej (NP), rozróżniając przy tym dwa jej sposoby rozumienia:
a) NP w sensie matematycznym – przeciwstawiona aktualnej, nie istniejąca jako całość, określona przez pewną precyzyjną regułę wyznaczania kolejnych, dowolnie wielu, wielkości pewnego typu (przykładem: niekończący się ciąg liczb nieparzystych); oraz
b) NP w sensie fizycznym – przeciwstawiona realnej, postulowana i badana w pewnej teorii, istniejąca w świecie fizycznym na zasadzie matematycznie opracowanej hipotezy (przykładem: nieskończona podzielność materii).

Wspomniany tekst nosi tytuł „Czy informatykom musi wystarczyć nieskończoność potencjalna?”. Ponieważ nie jest jeszcze opublikowany i będzie dopiero przedmiotem recenzji, za podstawę blogowej  dyskusji proponuję przyjąć slajdy z Konferencji, a ponadto pewne krótkie – i polemicznie brzmiące – fragmenty samego tekstu.

Oto te fragmenty:

1. [ze wstępu]

Tytuł niniejszego tekstu sugeruje, że w informatyce istnieje praktyka posługiwania się obiektami nieskończonymi. Sugestia taka może zaskakiwać, ponieważ systemy informatyczne kojarzą się raczej z czymś skończonym, na przykład ze skończonym zbiorem instrukcji programu komputerowego czy skończoną liczbą elementów w układzie scalonym. Efekt zaskoczenia ma łagodzić ostatnie słowo tytułu, które wyjaśnia, że współczesnych informatyków interesuje raczej nieskończoność „słaba”, zwana potencjalną (w opozycji do aktualnej czy urzeczywistnionej).
Być może jednak  silniejsze odwołania do struktur i procesów nieskończonych są w informatyce niezbędne… Tego tytuł nie wyklucza, co sygnalizuje wieńczący go znak zapytania.

2. [z zakończenia]

Zgodnie z deklaracją daną na wstępie – że niniejszy tekst jest zaproszeniem do dyskusji – chciałbym go zakończyć, przywołując fikcyjne głosy trzech informatyków, reprezentujących trzy sposoby podejścia do zagadnienia nieskończoności w informatyce. Ich wypowiedzi należy potraktować jako wstępne odpowiedzi na pytanie tytułowe artykułu.
Głos pierwszy należy do informatyka-praktyka, który widzi sprawę następująco: „Informatyce nie jest potrzebna żadna, nawet najsłabsza, forma nieskończoności – ani potencjalna w sensie matematycznym, ani potencjalna w sensie fizycznym. Maszyny i programy zawsze będą obiektami skończonymi, które trzeba badać i konstruować na sposób inżynierski, bez angażowania matematyczno-filozoficznej kategorii nieskończoności”.
Inny pogląd prezentuje drugi dyskutant, którego moglibyśmy nazwać  teoretykiem-realistą:Informatyka potrzebuje matematycznej teorii nieskończoności (potencjalnej i aktualnej), ponieważ teoria ta daje wgląd w ograniczenia informatycznych technik. W szczególności: teoria liczb nieobliczalnych wyjaśnia, na czym polegają ograniczenia technik cyfrowych, modelowanych za pomocą uniwersalnej maszyny Turinga”.
Jeszcze bardziej pro-nieskończonościowe nastawienie reprezentuje teoretyk-wizjoner, który wyraża je tak: „Oprócz matematycznych teorii nieskończoności informatyce są potrzebne – niejako na zapas – pewne teorie przyrodnicze, postulujące istnienie nieskończoności w świecie fizycznym. Być może bowiem w już niedalekiej przyszłości uda się obliczeniowo wykorzystać nieskończone wielkości i procesy fizyczne”.
Wypada zadeklarować na koniec, że jako autor przedstawionego tekstu staję po stronie teoretyka-realisty, który dodatkowo, z wielką ciekawością i uwagą, wsłuchuje się w głosy nie obawiających się nieskończoności wizjonerów.

Gorąco zapraszam do dyskusji,
jeszcze raz linkując SLAJDY
Paweł Stacewicz.

Opublikowano Dydaktyka logiki i filozofii, Filozofia informatyki, Filozofia nauki, Światopogląd informatyczny | Otagowano , | Skomentuj

Informacja jako współczesne arché

Z prawdziwą przyjemnością chciałbym zaprosić do dyskusji nad tekstem Pana Pawła Ciniewskiego z Uniwersytetu im. Adama Mickiewicza w Poznaniu (Zakład Filozofii Techniki i Rozwoju Cywilizacji). Autor przekonująco argumentuje, że we współczesnym obrazie świata pojęcie informacji pełni podobną funkcję do tej, jaką w starożytnej Grecji różni filozofowie przypisywali arché.

Rekomendowany do dyskusji tekst zaczyna się następująco:

Przedstawiony tekst dotyczy dwóch z pozoru bardzo odległych od siebie pojęć: informacji i arché. To pierwsze jest pojęciem współczesnym z konotacjami naukowymi i potocznymi, które nie miałyby sensu w starożytnej Grecji. Tymczasem to właśnie z niej pochodzi wspomniane już arché, nazywane czasami prazasadą. Adaptacja pojęć archaicznych do współczesnego stanu świata nauki jest zadaniem trudnym. Inne są bowiem warunki społeczne i stan techniczny Antyku oraz współczesności. Aby zatem szukać odpowiednika arché należy znaleźć takie pojęcie analogiczne, które z jednej strony służy do opisu rzeczywistości na podstawowym poziomie, a z drugiej stało się na tyle powszechne, że występuje w większości dziedzin nauk przyrodniczych i technicznych. Wydaje się, że pojęcie informacji spełnia te warunki.

Chciałbym wyjaśnić jeszcze, że tekst Pana Ciniewskiego zredagowaliśmy w sposób nietypowy. Włączyliśmy doń komentarze redaktora bloga, Pawła Stacewicza (PS), które są efektem wstępnej  dyskusji z autorem. Mamy nadzieję, że taka forma prezentacji  dodatkowo zachęci czytelników do wpisywania własnych komentarzy. Bardzo na to liczymy.

Na rozgrzewkę przedstawiamy fragment dyskusji obecnej w zalinkowanym tekście:

<<
Ciekawym przykładem (i być może też najważniejszym) są także Pitagorejczycy, dla których zasadę stanowiła liczba. Była ona rozumiana przez starożytnych bardzo materialnie: w samych przedmiotach zawarta jest już związana z nimi liczba, zbiór przedmiotów określony jest liczbą jej elementów itp. Same liczby były zatem statycznym aspektem arché, dynamicznym zaś relacje liczbowe. Jakże ciekawy jest fakt, że teoria Shannona jest teorią matematyczną, a dzięki komputerom cyfrowym (!) możemy skwantyfikować niemal każdy proces przyrodniczy. Na marginesie dodam, że zdaniem Jay’a Boltera maszyna cyfrowa jest pewnego rodzaju powrotem do antycznego myślenia o liczbie jako o czymś intymnie wplecionym w rzeczywistość. Niewymierność lub nieskończoność pewnych zjawisk (których to cech tak panicznie obawiali się Pitagorejczycy) nigdy nie będą w doskonały sposób odzwierciedlone za pomocą maszyn cyfrowych.

[ PS:
„Liczbowe” arché Pitagorejczyków wydaje się najbliższe współczesnemu rozumieniu informacji jako cyfrowego kodu, który właśnie ze względu na swoją cyfrowość (dyskretność) ma idealne odzwierciedlenie w liczbach.
To dzięki praktyce użytkowania komputerów cyfrowych wiemy, że różne fragmenty/aspekty rzeczywistości dają się efektywnie kodować jako liczby — zarówno dane dla programów komputerowych, jak i same programy, mogą być przedstawione jako ciągi bitów (zer/jedynek), które to ciągi  można rozumieć jako liczby; operacje komputera z kolei mogą, a nawet muszą, być postrzegane jako operacje na liczbach.
Uzyskujemy zatem nowy wgląd w pitagorejskie hasło, że „wszystko jest liczbą”. Najprzeróżniejsze (być może nawet wszystkie) zjawiska w świecie daje się zakodować/odzwierciedlić liczbowo we wnętrzu komputerów. Co więcej, za pomocą liczb i operacji na nich jesteśmy w stanie kreować wirtualne światy (pod pewnymi względami nieodróżnialne od naszego).
Słusznie jednak zauważono wyżej, że wyłącznie cyfrowa wizja świata może (choć nie musi) być niepełna, ponieważ w świecie mogą istnieć takie zjawiska, dla których opisu są niezbędne liczby nieobliczalne (w sensie Turinga). Wyżej jest mowa o niewymierności; w gruncie rzeczy jednak, chodzi o specjalnego rodzaju (trudną!) niewymierność zwaną nieobliczalnością.
]
>>

Gorąco zapraszamy do dyskusji w blogu — Witold Marciszewski i Paweł Stacewicz.

A oto finalny link do rekomendowanego tekstu:
Paweł Ciniewski, Informacja jako współczesne arché.

Opublikowano Dydaktyka logiki i filozofii, Filozofia informatyki, Światopogląd informatyczny | Otagowano , , | 2 komentarze

Czy Alan Turing jest maszyną Turinga?

Zmysły, analiza i abstrakcja w twórczości matematycznej

Drugi wiersz tytułu wymienia akty umysłu niezbędne w tworzeniu pojęć matematycznych przez ludzkich badaczy. Pierwszy zaś pyta, czy do takich aktów byłby zdolny robot skonstruowany wedle przepisu na maszynę Turinga. Jeśli tak, to tego rodzaju robotem mógłby być Turing, a także klasycy twórczości pojęciowej — Euklides w geometrii oraz Peano w arytmetyce.

Wywód jest zorientowany polemicznie w stosunku do mechanicyzmu w teorii inteligencji (tzw. ,,strong AI”). To jest, do poglądu, że dostatecznie efektywne algorytmy, przy złożoności sprzętu dorównującej złożoności mózgu, uczynią matematycznego robota nieodróżnialnym (w sensie testu Turinga) od Turinga, Euklidesa czy Peano, gdy idzie o zdolność twórczego pojęciowania w rozwiązywaniu problemów.

Istotną w tym wywodzie przesłanką jest ta, że nasze pojęcia geometryczne i arytmetyczne mają genezę empiryczną, to jest, wychodzą od obserwacji zmysłowych. Postrzegamy zmysłowo bryłę, a dokonując w niej analizy czyli myślowego rozbioru, wyodrębniamy w niej myślą płaszczyzny. Analiza płaszczyzn wyodrębnia z nich linie, itd.

Kolejnym krokiem jest abstrakcja,  gdy od jakiejś konkretnej powierzchni przechodzimy do myślenia o powierzchniach w ogólności; tak samo do myślenia o liniach, punktach etc. Analogicznie, arytmetyka zaczyna się od postrzegania wzrokiem struktur przestrzennych, czy uchem struktur czasowych. Zmysł rozróżnia w nich elementy, a gdy są niezbyt liczne, np. pięć palców, postrzega się zmysłowo ich liczności oraz równoliczności. Takie struktury grupuje się w klasy, abstrahując od indywidualnych różnic między elementami. Tak powstaje abstrakcyjne pojęcie klasy obiektów trafnie nazywanych (Sierpiński,  „Arytmetyka teoretyczna”, 1955)  liczbami podstawowymi.

Stosując kolejne abstrakcje i konstrukcje, dostajemy z klasy liczb podstawowych inne klasy liczb. Gdy abstrakcja prowadzi w rejony odległe od empirycznego punktu wyjścia, upewniamy się, czy nie powstał pod drodze jakiś błąd. Czynimy to pragmatycznie, biorąc pod uwagę sukces danej teorii w uniknięciu sprzeczności (jeśli ona się ujawni, trzeba naprawić teorię), jak też w praktycznych zastosowaniach. Taka filozofia matematyki,
empiryczno-pragmatyczny platonizm, dobrze się nadaje na przewodnika w szukaniu odpowiedzi: czy Turing jest maszyną Turinga?.

Niniejszy wpis jest streszczeniem artykułu przewidzianego do publikacji  w materiałach konferencji „Filozofia w Informatyce” mających się ukazać  pod redakcją Pawła Polaka. Ponieważ w trakcie prac redakcyjnych możliwe są modyfikacje nadesłanych materiałów, autor byłby wdzięczny za uwagi do obecnego wpisu. Choć stanowi on tylko streszczenie, zawiera pewne stwierdzenia, które mogą być kontrowersyjne i nadające się dzięki temu do  polemicznych komentarzy.

Opublikowano Epistemologia i ontologia, Filozofia informatyki, Logika i metodologia | Otagowano , , , , , | Skomentuj

Czym jest intuicja intelektualna
według racjonalistycznej filozofii nauki?

§1. Wprowadzenie metodologiczne

Jest to tekst wprowadzający w zagadnienie „Racjonalizm jako realistyczna filozofia nauki” dyskutowane na seminarium z filozofii nauki (Pol.~Warsz., 24.01.2017). Racjonalista, w odróżnieniu od empirysty, twierdzi, że na poznawanie składają się, oprócz spostrzeżeń zmysłowych,  spostrzeżenia intelektualne, a zawdzięczamy je dyspozycji umysłu,
jaką jest  intuicja intelektualna.

Zamiast prób definiowania tej dyspozycji słownikowego (zadanie wyjątkowo trudne), posłużę się  operacjonalizacją. W obecnym przypadku jest to procedura polegająca na stwarzaniu sytuacji stanowiących sposobność do doświadczenia we własnym umyśle czynności czyli operacji,  jakimi są spostrzeżenia intelektualne skutkujące  asercją  (tj. uznaniem za prawdziwe) zademonstrowanych w tej procedurze zdań. Takie zdania to m.in. aksjomaty arytmetyki demonstrowane w §2.

Ten, kto wykonał operację asercji danego sądu czyli uznania go za prawdziwy, oraz zauważył że nie wymaga to odwołania się do zmysłów, uzna tym samym istnienie innej niż zmysłowa dyspozycji poznawczej. Rozpozna więc w sobie racjonalistę. Natomiast empirysta obroni swą pozycję, o ile wskaże na zmysł, który uzasadnia asercję tego samego sądu bez potrzeby odwoływania się do jakiejś innej dyspozycji.

Jeśli się odpowiednio różnicuje sądy poddane takiej analizie, to widać,  że mamy do czynienia z różnymi odmianami intuicji. W poniższym zbiorze przykładów znajdą się (A) twierdzenia będące owocem intuicji nie budzącej dziś wątpliwości, lecz ukształtowanej dopiero w wyniku ewolucji kulturowej; (B) twierdzenia bez takich kulturowych uwarunkowań; (C) twierdzenia, co do których intuicje są podzielone nawet wśród wybitnych znawców danej dziedziny — jak w przypadku NAD (zob. §4) czy hipotezy kontinuum. Ta świadomość, w połączeniu z pragmatycznym falllibilizmem, różni racjonalizm współczesny od antycznego (Platon etc.), scholastycznego i 17-wiecznego.

Ciąg dalszy zawiera się w odcinkach:

§2. Aksjomaty arytmetyki Peano
§3. Hinduska koncepcja zera
§4. Zasada NAD: ,,Nulla Actio in Distans”
§5. Arystotelesowe odróżnienie intelektu aktywnego i pasywnego.

Opublikowano Bez kategorii, Epistemologia i ontologia, Filozofia nauki, Światopogląd racjonalistyczny | 1 komentarz

Maszyny przyszłości a… nauczanie matematyki

Chciałbym przywitać w naszym blogu, już po raz drugi w charakterze autora, Pana Jacka Gładysza – studenta matematyki na wydziale MiNI PW.  Pan Jacek przysłał nam kolejny intrygujący tekst, który wpisuje się doskonale w tematykę aktualnych dyskusji ze studentami. Dyskusji o potencjalnych zagrożeniach ze strony coraz doskonalszej (i coraz śmielej doskonalącej się na własny rachunek) SZTUCZNEJ INTELIGENCJI.

Gorąco zachęcam do rozmowy nad esejem, który zaczyna się tak:

****

Najprawdopodobniej za naszego życia świat zmieni się nie do poznania. Całe rzesze zawodów zostaną skazane na wymarcie za sprawą rozwoju sztucznej inteligencji. Co możemy zrobić dzisiaj, by przygotować się na te „ciężkie” cudowne czasy – w których, z jednej strony, nie trzeba będzie robić prawie niczego  (zrobią to za nas maszyny),  a z drugiej strony,  trudno będzie znaleźć sobie miejsce, ze względu na fakt, że owe maszyny będą potrafiły robić coraz więcej, a co za tym idzie, my sami staniemy się mniej potrzebni?

Są dwie zasadnicze cechy, które odróżniają nas od robotów. Pierwszą z tych cech jest sprawność obliczeniowa. Roboty zdecydowanie nas pod tym względem przewyższają i – nie oszukujmy się – wyścigu w tej dziedzinie nie wygramy nigdy. Drugą rzeczą jest natomiast samoświadomość. Niezależnie od tego, w jaki sposób to wysłowimy – czy będziemy mówić o nieśmiertelnej duszy, umyśle, jaźni czy ego i superego – czyni nas to bytami o szczebel wyżej stojącymi niż szeroko rozumiane maszyny…

****

Jeśli kogoś ten wstęp zainteresował, niech kliknie w link do całości pod tytułem:
Starcie cywilizacyjne z maszynami a podejście do nauczania matematyki.

Gdyby zaś miał ochotę przeczytać (a także skomentować) wcześniejszy tekst p. Jacka Gładysza, niech klinie w link:
Czy człowiek jest maszyną?

Gorąco zapraszamy do dyskusji:
Jacek Gładysz i Paweł Stacewicz.

Opublikowano Dydaktyka logiki i filozofii, Światopogląd informatyczny | Otagowano , , , | 10 komentarzy

Racjonalizm jako realistyczna filozofia nauki

Wprowadzenie

Jest to tekst dość długi, jak na obyczaje w  blogu. Toteż Czytelnik na tyle cierpliwy, żeby doczytać do końca, zasługuje na wyjaśnienie intencji autorskich: co autor pragnie osiągnąć  łącząc w jednym wpisie tyle zagadnień? Jedna z intencji wiąże się z rolą dydaktyczną tego blogu, która nie jest jedyna, ale nie jest tu nieważna. Dzielę się wiadomościami, które może się przydadzą osobom zainteresowanym filozofią informatyki, filozofią umysłu, filozofią i metodologią nauk.

Nie mniej ważnym motywem jest świadomość, jak wielkim darem losu jest dziś dla ludzi zajmujących się nauką możliwość wypowiadania w blogu poglądów bliskich autorowi, pociagających go intelektualnie, ale na tyle kontrowersyjnych, że nie wysłałby ich do druku w obawie, że jakiś anonimowy recenzent z innej szkoły myślenia zablokuje publikację. W dyskusji na blogu taki „kłótliwy” oponent to nie zagrożenie, ale szansa na impuls do dalszych własnych przemyśleń. Wymieniam niżej dwie tezy tego szkicu, o których wiem,
znając środowisko filozoficzne, że mogą wydać się niektórym kontrowersyjne.

Jedna z nich to moje rozumienie Pascalowskiego pojęcia „serca” jako zdolności intuicyjnego pojmowania prawd podstawowych, a w tym matematycznych. Oponentów prosiłbym o interpretację następującego tekstu z „Myśli” Pascala (nr 477 wg wyd. Chevaliera, 1954). „Serce czuje, że są trzy wymiary w przestrzeni i że liczby są nieskończone […]. Zasady czujemy, twierdzenia wyprowadzamy za pomocą dowodu; i jedno, i drugie pewnie, mimo że odmiennymi drogami. I równie bezcelowe i niedorzeczne jest, aby rozum żądał od serca udowodnienia pierwszych zasad, nim zgodzi się na nie przystać, jak byłoby niedorzeczne, aby serce — nim zgodzi się je przyjąć — żądało od rozumu czucia wszystkich twierdzeń, które ten udowadnia.” (Zob. http://sady.up.krakow.pl/antfil.pascal.mysli.htm)

Nie jest ta myśl Pascala obroną irracjonalizmu w takim sensie, w jakim rozumiał go K.Ajdukiewicz w artykule „Logistyczny antyirracjoalizm w Polsce”; wydał w nim walkę „prądowi — jak pisał — irracjonalnej metafizyki polskich romantyków”.

Ów krytycyzm Ajdukiewicza nie godzi w poglądy uczestników dyskusji zainicjowanej wpisem dra Pawła Stacewicza „Czy warto być racjonalistą (a nie irracjonalistą)?” (25.XI.2016). Definiują oni irracjonalizm po swojemu: jako pogląd, że uczucia są niezbędne jako dopełnienie aktywności rozumu (podczas gdy racjonalizm pojmują jako postawę ignorującą uczucia).  „Irracjonalizmu” takiego, jakiego bronią niektórzy uczestnicy dyskusji ja też bronię zdecydowanie np. w cytowanym niżej (§1.2) studium „Wrażliwość estetyczno-logiczna w badaniu naukowym”.

Ostrze krytyczne maksymy Pascala kieruje się w gruncie rzeczy przeciw temu nurtowi filozofii, który nosi nazwę empiryzmu. Jeśli rozumieć tę nazwę w sensie nadanym przez Koło Wiedeńskie — awangardę empiryzmu w XX wieku (por.§3). To empiryści żądają, żeby uzasadniać pierwsze zasady, np. aksjomaty arytmetyki, przez wrażenia czyli czucia zmysłowe. A gdy widzą, że to niemożliwe, odmawiają im prawdziwości i przypisują im jedynie status umownych ustaleń mających ułatwiać rachunki. Oto jak silna bywa awersja do pogodzenia się z faktem, że istnieją zasady nie dające się wyprowadzić z czuć zmysłowych (por.§3). Empiryzm wiedeński dość szybko utracił w skali światowej aurę jedynie naukowej filozofii nauki, ale w skali lokalnej, np. nad Wisłą, ma się w pewnych kręgach dobrze, i z ich strony spodziewałbym się polemiki. Chętnie do niej stanę. Szczegóły tego aktu rzucenia rękawicy znajdą w końcowym odcinku §3.

§1. Racjonalność jako postawa życiowa
a racjonalizm jako kierunek filozoficzny

§1.1.  Tym elementem wspomnianej na wstępie dyskusji, który stał się impulsem do obecnego wpisu jest częste występowanie słowa „intuicja” (naliczyłem 10 wystąpień). Jest ono w niej używane w sensie potocznym, bliskim znaczeniowo słowu „uczucie”. Nie kwestionuję tego sensu, bo jest to fakt językowy, a fakty się respektuje. Pomyślałem więc, że jako wieloletni (poczynając od rozprawy w roku 1971) badacz racjonalizmu w filozofii europejskiej, powinienem podzielić się wiadomością, jak intuicję rozumiano w tym nurcie.
A także wyjaśnieniem, dlaczego jest to pojęcie kluczowe w myśli racjonalistycznej XVII wieku — Kartezjusza, Pascala, Leibniza. Nie ma tam ono nic wspólnego ze sferą emocjonalną, lecz dotyczy podstaw poznania, w szczególności matematycznego.

Nie mniejszą niż u tych klasyków racjonalizmu wagę ma pojęcie intuicji u czołowych racjonalistów XX wieku, jak Kurt Gödel i Alan Turing. To jest, w tym typie racjonalizmu, który nazywam tu informatycznym (por.§2). O Turingu będzie dalej mowa (§2.2). Ewentualnych zaś w tej kwestii niedowiarków zachęcam do zadania Google’owi pytania: Turing on intuition (bez ujmowania w cudzysłów). Okaże się, że jest na ten temat blisko 400.000 wyników wyszukiwania. Jest to więc w informatyce i w jej filozofii temat na porządku dziennym. A jest tak to ze względu na interakcję intuicji i algorytmu (temat m.in. pracy doktorskiej Turinga, 1939).

Żeby uwydatnić odmienność tego pojęcia filozoficznego w stosunku do mowy potocznej, skorzystam z przykładu rozumienia potocznego, jaki znajdujemy w dyskusji „Czy lepiej być racjonalistą…” Mamy tam wypowiedź (Milena M., 3.XII): „Od początku bronłam postawy bycia irracjonalistą… Odbieranie świata nie tylko poprzez rozum, ale również emocje czyni go barwniejszym”. Nie jest więc Autorka przeciwniczką odbierania świata przez rozum, ale pod hasłem irracjonalizmu domaga się dopuszczenia uczuć, które czynią świat barwniejszym. Podobnie wyważona jest druga wypowiedź (Marta P., 5.XII), też podnosząca rolę uczuć, lecz nie domagająca się ich dominacji nad rozumem.

Słowo „postawa” jest istotne dla tego i dla innych głosów. Jest to zrozumiałe w sytuacji, gdy problem sformułowano w postaci: „Czy warto być racjonalistą?”. Rzeczownik osobowy „racjonalista” w równym stopniu wywodzi się z terminu „racjonalność” oznaczającego cechę pewnej postawy lub typu działania, co od słowa „racjonalizm”, które określa kierunek filozoficzny związany m.in. z nazwiskami Kartezjusza i Leibniza.

Wolno więc  respondentom interpretować termin „racjonalista” w jeden lub drugi sposób. Nic dziwnego, że dyskusja się potoczyła wokół racjonalności.Ludzkie postawy i zachowania są w zasięgu naszych codziennych obserwacji. Każdy więc inteligentny obserwator (a takimi okazali się dyskutanci) może tu mieć coś do powiedzenia. Natomiast racjonalizm jako kierunek filozoficzny to przedmiot badań specjalistycznych.

§1.2.  Sam jestem (także w sensie postawy) racjonalistą zdeklarowanym, ale nie tak
skrajnym, żeby nie zgodzić się z poglądem, że „poprzez uczucia możemy dostrzec to, czego nie widzi się naukowo”. To mi przypomina zdanie wielkiego polskiego filozofa orientacji racjonalistycznej Romana Ingardena zasłyszane przed pół wiekiem na jego gościnnym wykładzie w KUL. Mówił on o poznawczej sile miłości, która otwiera oczy na wnętrze drugiego człowieka, w porównaniu z siłą nienawiści, która zaślepia. Istotnie, dość często można zauważyć, że empatia daje trafniejszy wgląd w czyjąś psychikę niż teoria, z którą podchodzi do diagnozy dyplomowany psycholog.

Dotyczy to nie tylko poznawania ludzi. Jak widać u geniuszy nauki (np. Einstein,  Heisenberg, Poincaré, Łukasiewicz) także fascynacja pięknem — a więc rodzaj miłości — wszechświata, matematyki, czy określonego modelu matematycznego, jest stanem, w którym nawiedza uczonego błysk intuicji poznawczej. Piszę o tym szeroko w rozdziale pt. . „Wrażliwość estetyczno-logiczna w badaniu naukowym jako wyzwanie dla sztucznej inteligencji” w części III („Dyskusja o pięknie”) książki „Jedność nauki — jedność świata?” (pod red. M.~Hellera i J.~Mączki, wyd. Biblos/OBI, Kraków 2003).

Wchodząc w rozważania, do których mnie zachęciły wypowiedzi w blogu, wezmę za myśl przewodnią, jakby zawołanie, dwa kluczowe słowa, których użyłem w poprzedni akapicie: intuicja poznawcza.  Niech ścieżkę myślową do tej kwestii (dyskutowanej potem w §2 i §3) utoruje pewna uwaga polemiczna na temat Pascala. Powinno to usunąć nieporozumienie zakłócające dyskusje na temat racjonalizmu.

Słynną maksymę Pascala serce ma racje, których rozum nie zna  interpretuje się często na modłę wersetu Mickiewicza „serce i wiara silniej mówi do mnie niż mędrca szkiełko i oko”. Ale Pascal nie był romantykiem. Był dogłębnym racjonalistą, co widać, gdy czyta się uważnie jego „Myśli”, a w nich np. sentencję „cała nasza godność polega na myśleniu”. Otóż francuskie „raison” podobnie jak angielskie „reason” i łacińskie „ratio” oznacza nie tylko rozum, lecz także rozumowanie,  w szczególności matematyczne.

Bierze się bowiem ta maksyma z doświadczeń matematyka. który wie, że nie da się do wszystkiego dojść rozumowaniem. Musi ono się oprzeć na aksjomatach i regułach, a te nie mogą brać się z rozumowania, jeśli nie mamy wpaść w wir nieskończonego cofania się w dowodzeniu. Gdy przyjmujemy aksjomat, czynimy to ufając intuicji poznawczej, i to ją Pascal w pewnych kontekstach nazywa sercem. Na przykład, o intuicji arytmetycznej powiada „serce nam mówi, że liczb jest nieskończenie wiele”, zaś o intuicji geometrycznej, że serce uczy o istnieniu trzech wymiarów (por. cytat we Wprowadzeniu).

W innych kontekstach określa on intuicję zwrotem  esprit de finesse, co z grubsza można oddać jako „zmysł złożoności”. Dobrze go chyba obrazuje arytmetyczny aksjomat indukcji: całą złożoność zbioru liczb naturalnych ujmujemy jednym rzutem myśli, a więc niejako jednym nieomylnym odruchem, a to można porównać metaforycznie do nieomylnych odruchów serca. Dodajmy, że pojęcie intuicji matematycznej było kluczowe także dla racjonalizmu Kartezjusza (używał on łacińskiego intuitus); jego myśl kultywowało
środowisko uczonych klasztoru Port Royal, w którym najważniejszą postacią był Pascal.

Tezy o irracjonalizmie Pascala mógłby ktoś próbować bronić, wskazując na jego religijność w żarliwym typie kalwinistycznym, ale trzeba pamiętać o duchu epoki. Religijność cechowała też Kartezjusza (odkrycie geometrii analitycznej przypisywał Boskiemu natchnieniu), a także Leibniza (autora pobożnej pieśni do nabożeństw luterańskich). Obaj jednak są jednomyślnie uznawani za tytanów racjonalizmu.

§2. Współczesny racjonalizm informatyczny

§2.1.  Racjonalizm klasyczny, z jego nurtem kartezjańskim i nurtem leibnizjańskim, to pasjonujący temat dla historyków idei naukowych i filozoficznych. Studenci zaś politechniki, jeśli mają się dowiadywać o racjonalizmie, to raczej o jego wersji informatycznej. Ta bowiem wiąże się z problematyką sztucznej inteligencji. Racjonalista staje przed pytaniem, które w postaci kolokwialnej, skrajnie uproszczonej, brzmiałoby tak: czy robot może mieć rozum? Rozum w sensie zdolności dedukowania z aksjomatów mieć on może, o czym świadczy technologia automatycznego dowodzenia twierdzeń. Ale czy wchodzi w grę rozum także w sensie intuicji, zdolnej odkrywać prawdy nadające się na aksjomaty? Oto jest pytanie.

Cechą współczesnego racjonalizmu, widoczną w szczególności u Kurta Gödla i Alana Turinga, jest dostrzeżenie faktu, że postęp matematyki polega na współgraniu czyli interakcji (sprzężeniu zwrotnym dodatnim) między intuicją matematyczną  oraz algorytmem. Oba te pojęcia są  obecne również w klasyce racjonalizmu, ale z tą różnicą, że intuicjom poznawczym, czyli spostrzeżeniom intelektualnym, przypisywali klasycy niezawodność, a więc nieomylność. Natomiast współcześni racjonaliści, w szczególności Kurt Gödel, traktują ich wiarogodność analogicznie do wiarogodności spostrzeżeń zmysłowych.

W zasadzie, mamy do zmysłowych wielkie zaufanie, przecież buduje się na nich gmach nauk empirycznych, ale nie zamykamy oczu na fakty złudzeń, pomyłek, niedokładności. Podobnie ma się sprawa spostrzeżeń intelektualnych. Buduje się na nich matematyka i nie tylko ona, są więc godne zaufania, ale trzeba też mieć środki kontroli. Takim środkiem jest
przechodzenie od spostrzeżeń intelektualnych do algorytmów. Jeśli dobrze sprawiają się w praktyce oparte na intuicjach algorytmy, usprawiedliwia to kredyt zaufania dany generującej algorytmy intuicji.

Tak ma się np. sprawa z intuicją liczb i zachodzących między nimi relacji. Od tylu wieków, gdy stosujemy algorytmy obliczania, nie zdarzyło się żeby wiara, że 2+2=4 prowadziła inżyniera do pomyłki w konstrukcji mostu, czy księgowego do błędu w bilansie lub obliczaniu odsetek.

Żeby komuś opowiedzieć, jak przebiega interakcja intuicji z algorytmem, trzeba się wpierw upewnić czy tak samo pojmujemy intuicję arytmetyczną. Istotne jest to, że naprowadza ona na istnienie pewnych obiektów abstrakcyjnych. Na początku może to być zdroworozsądkowe spostrzeżenie, że mam tyle samo palców u każdej ręki. Także u nóg, a podziela też tę cechę każdy kwiat pięciopłatkowy. Itd. W tym „itd.” jest śmiały skok rozumu w nieskończoność: nie uznajemy żadnych ograniczeń co do ilości takich równolicznych struktur pięcioelementowych.

Gdy nas zapytają, czy istnieje coś wspólnego tym strukturom, możemy to z przekonaniem potwierdzić: „tak istnieje coś im wspólnego —  piecio-elementowość”. Inaczej mówiąc, istnieje liczba całkowita pięć. Jest to obiekt dostrzeżony w wyniku abstrakcji, toteż filozof nazywa go abstraktem. Abstrahujemy od tego, czy chodzi o lewą czy prawą dłoń, czy jest to dłoń czy stopa, czy pięciolistna koniczyna. Abstrahujemy też od kolejności elementów (obojętne czy liczymy palce zaczynając od kciuka, czy odwrotnie).  Abstrakty są przedmiotem intelektualnej intuicji, stąd doniosłość tego pojęcia w aparacie pojęciowym racjonalizmu.

Co jest w tym przykładzie spostrzeżeniem intelektualnym? Jest to zrozumienie, że mamy do czynienia z jakąś swoistą strukturą (różną np. od struktury czterech kół wozu). I że ta struktura jest obecna w takich to a takich obiektach fizycznych lub też niefizycznych (np. w pięciu zachwyceniach wobec zachodu słońca). Ważne jest tu słowo „obecna”. Abstrakt istnieje przez obecność w strukturze, a nie jakoś luzem, gdzieś poza wszelkimi strukturami.

Abstrakcja arytmetyczna jest w tym względzie podobna do geometrycznej.Powierzchnia ekranu, który mam przed czyma istnieje jako obecna w płaskim sześciościanie, jakim jest monitor. Tylko ją widzę, gdy patrzę wprost, a nie z ukosa; jest to więc pierwotna, niepowątpiewalna, dana wzrokowa. Trudno mi zatem uwierzyć, że jej nie ma, choć wiem, że nie da się oderwać jej od bryły, żeby sobie samodzielnie bytowała gdzieś w przestrzeni; jest ona realna tylko jako granica bryły. Podobnie dochodzę przez kolejne kroki abstrakcji do istnienia odcinków jako granic płaszczyzn oraz punktów jako granic odcinków (nota bene, tak właśnie definiuje to Euklides w księdze I).

§2.2.  Taki festiwal abstraktów można aranżować w nieskończoność, sięgając do wszelkich działów matematyki i wszelkich dziedzin wiedzy, ale żeby wrócić do arytmetyki (jako dyscypliny będącej środowiskiem algorytmów), dorzućmy jeszcze do tej kolekcji abstrakt wyższego niejako rzędu, jakim jest kwadrat liczby wymiernej uyskany z abstraktu, jakim jest funkcja mnożenia. Te obiekty muszą istnieć w świecie, o ile realne jest prawo grawitacji, bo trudno pojąć, jak mogłoby ono tak doskonale się sprawdzać, posługując się
jakimiś dowolnymi fikcjami wymyślonymi przez ludzki umysł. A jeśli nie są one dowolne, to co nas skłania do uznania realności takich a nie do innych abstraktów? Ten pragmatyczny tok rozumowania przemawia na rzecz poglądu, że świat jest matematyczny sam w sobie, a matematyzowalny  w naszym umyśle (nawiązuję tu do wpisu dra Stacewicza z 28.XII.2016).

Teza o matematyczności świata jest jednym z dwóch kluczowych punktów klasycznego racjonalizmu: że oprócz rzeczywistości poznawalnych zmysłowo obiektów empirycznych mamy rzeczywistość nie mniej obiektywnych jestestw matematycznych. To teza ontologiczna. Teza druga, epistemologiczna, głosi, że te jestestwa są dostępne intuicji czyli spostrzeżeniom umysłowym, analogicznie jak obiekty empiryczne są dostępne percepcji zmysłowej.

Racjonalizm informatyczny podziela obie tezy klasyczne, lecz z podwójną modyfikacją drugiej z nich. Po pierwsze, spostrzeżenia umysłowe nie są nieomylne, wymagają więc sprawdzania podobnie jak hipotezy empiryczne. Po drugie, na proces ich weryfikacji składają się trzy kroki, o których się nie mówi w racjonalizmie klasycznym. Są one następujące (a) precyzyjny opis uchwyconych intuicją abstraktów, co czynimy przez sformułowanie aksjomatyki; (b) formalizacja systemu aksjomatycznego przez takie reguły składni i takie reguły wnioskowania, które się odwołują wyłącznie do widzialnej formy
(kształtu) wyrażeń, co jest warunkiem koniecznym ich arytmetyzowalności oraz warunkiem kroku następnego; (c) mechanizacja systemu przez konstrukcję algorytmów dowodzenia lub obliczania, wykonalnych dla maszyny. Jeśli te algorytmy posłużą do trafnego rozwiązywania problemów w matematyce lub poza nią, dostarczy to nam to potwierdzenia trafności intuicji zawartych w aksjomatach, na których się opierają nasze algorytmy.

Żeby uzyskać w formie przykładu jakiś rzut oka na ten złożony proces, przywołajmy teorię grawitacji. Przekonujący i spektakularny jej sukces widać w dziedzinie lotów kosmicznych. Statkowi o takiej a takiej masie, mającemu się znaleźć na tak a tak odległej od ziemi orbicie, trzeba nadać odpowiednią do tych parametrów energię przyspieszenia; to ona przezwycięży ziemskie przyciąganie. Dzięki obliczeniom opartym na prawie grawitacji, wszystko to się realizuje z dokładnością co do sekund!

Fakt, że potrafimy to obliczyć zawdzięczamy wzorowi Newtona. To on, wraz z prawami mechaniki, dostarcza niezbędnego algorytmu. Kolosalny sukces tego algorytmu w sferze fizycznej byłby nieosiągalny gdyby nie istniał iloczyn mas, kwadrat odległości itp. Ten iloczym i ten kwadrat to obiekty wyabstrahowane z bytów fizycznych, jak masa, i geometrycznych, jak dystans w przestrzeni. Podobnie, przypomnijmy, abstrahuje się powierzchnię (pomijając resztę bryły), czy liczbę pięć z pewnej struktury (pomijając inne jej własności).

W poszukiwaniu charakterystyki racjonalizmu doszliśmy do punktu, gdy możemy wskazać na postępowanie naukowe typowo racjonalistyczne, a na Newtona jako sławetny historyczny przykład takiego postępowania. Będzie to zarazem ilustracja poglądu Turinga na twórczość naukową, w szczególności matematyczną). Turing w roku 1939 opublikował rozprawę o logikach porządkowych, w której, jak pisze jego biograf, „pytał, czy możliwe jest sformalizowanie tych działań umysłu, które można by nazwać twórczymi czy oryginalnymi co do swej natury” (A.Hodges, „Turing”, przekład polski 1997, s.32). W poszukiwaniu odpowiedzi Turing czyni następującą uwagę (podkreślenie kursywą — WM).

„Rozumowanie matematyczne można uznać za połączenie dwóch zdolności, które możemy nazwać  intuicją  oraz pomysłowością. Działanie intuicji polega na wydawaniu spontanicznych sądów, które nie są rezultatem świadomych toków rozumowania. Sądy te są często, ale bynajmniej nie zawsze słuszne. Czasami możliwe jest znalezienie niezależnego sposobu weryfikacji słuszności sądu intuicyjnego.” (op.cit., s.34).

Przykładem takiego sądu intuicyjnego, pisze dalej Turing, może być powzięta przez kogoś myśl, że każda liczba naturalna jest jednoznacznie rozkładalna na czynniki pierwsze. Niezależnym sposobem zweryfikowania intuicji będzie dowód danego sądu na podstawie aksjomatów arytmetyki. Dowód ten, pisze dalej Turing, będzie również zawierał sądy intuicyjne, ale będą one mniej zawodne niż ów pierwotny sąd. Jak wiemy z logiki, te bardziej niezawodne sądy intuicyjne to aksjomaty (w tym przypadku arytmetyki) oraz intuicje wynikania prowadzące do następnych wierszy dowodu (ujęte w logicznych regułach wnioskowania).

Co do aksjomatów, możliwe jest postępowanie, które wprawdzie nie redukuje niepewności do zera, ale sprowadza ją do jakiegoś realnie osiągalnego minimum. Wracając do Newtona, przyjrzyjmy się temu na przykładzie prawa grawitacji, patrząc na nie tak, jak gdyby było aksjomatem pewnego fragmentu fizyki. Mówi ono, że siła grawitacji między masami  m  oraz n  dwóch ciał jest wprost proporcjonalna do iloczynu m*n  i odwrotnie proporcjonalna do kwadratu odległości między środkami tych ciał; ten iloraz trzeba jeszcze
pomnożyć przez stałą proporcjonalności (uniwersalna stała grawitacyjna G).

Tym, co jest najwymowniej charakterystyczne dla racjonalizmu, to intuicja Newtona, że prawo grawitacji jest absolutnie uniwersalne, obowiązujące w każdym rejonie wszechświata. W czasach Newtona tej intuicji uniwersalności nie uzasadniały wystarczająco dane eksperymentalne. Mógł się on powołać na wyniki Galileusza, gdy idzie o grawitację na ziemi, a na dane Keplera gdy idzie o grawitację w naszym układzie słonecznym, ale prawo Newtona rozciąga się na cały wszechświat. I to nie tylko przestrzennie. Gdy wiemy już dziś o ewolucji wszechświata, wiemy też o działaniu grawitacji w każdej fazie ewolucji. Na przykład, gdy nie istniały atomy, a elektrony i protony snuły się chaotycznie w przestrzeni, stało się za sprawa grawitacji, że elektron
poczuł jakby pociąg do protonu i utworzył z nim atom wodoru. Potem grawitacja uformowała inne pierwiastki, a potem luźne chmary gazu przekształciła w zwarte ciała gwiazd, i tak się toczyła ta epopea rosnącej złożoności kosmosu.

Uniwersalne prawo grawitacji to kolosalny triumf racjonalizmu i spektakularna porażka empiryzmu (o którym mowa w §3). Ale nie mniej ważnym bohaterem tej historii jest algorytm. O przyciąganiu się ciał mówił już Empedokles (wiek V p.n.e.), ale siłę przyciągania można obliczać dopiero wtedy, gdy ma się algorytmy mnożenia, dzielenia i potęgowania. Te z kolei wzięły się z intuicji, które są zawarte w aksjomatach arytmetyki. Tak intuicja prowadzi do algorytmów, te zaś wspomagają powstawanie nowych intuicji, a potem ich weryfikację.

Co do weryfikacji, pouczający jest ostry spór, który toczył Leibniz ze zwolennikami teorii grawitacji. Leibniz uważał ją za niedorzeczną, ponieważ naruszała taką intuicyjną oczywistość, jak to że nie jest możliwe jakiekolwiek oddziaływanie fizyczne na odległość (actio in distans) odbywające się poza czasem. Newton też miał ten skrupuł, ale się z nim za sprawą nienagannej sprawdzalności prawa grawitacji; dostarczało ono metody obliczeń (czyli algorytmu), których wyniki wciąż się potwierdzały w doświadczeniu z niebywałą dokładnością. Wobec tak twardych faktów przeszedł bez echa protest intuicji         leibnizjańskiej. A swoją drogą, może była ona słuszna, wyprzedzając o kilka wieków odkrycie fal grawitacyjnych jako czynnika, który przenosi z prędkością światła energię promieniowania grawitacyjnego? To zdaje się sprawiać, że grawitacja tak pojęta spełnia warunek Leibniza: dystans między ciałami jest pokonywany przez dający się mierzyć czynnik fizyczny oddziałujący w czasie (pierwsza rejestracja przez detektor fal  grawitacyjnych — 14.IX.2015). Jego skutki umiał przewidywać bezbłędnie Newton, a bliższy odgadnięcia fizycznej natury tego czynnika był zapewne, jak się dziś zdaje, Leibniz. To bardzo interesujący materiał do badań nad drogami odkrywania przez intuicję prawd rozumu.

Uzupełnienie 14.01.2016.  W sprawie grawitacji zob. uwagi czytelnika  km  w komentarzu z dzisiejszego dnia.

 §3. Empiryzm — utopijny projekt uprawiania nauki

Jest to projekt snuty z dużą wyobraźnią, ale bez oglądania się na historyczne doświadczenia nauki. Zainicjowany w XVII i XVIII wieku przez Anglików (Locke, Berkeley) i Szkotów (Hume), pod koniec XVIII wieku dotarł do Francji (Condillac, D’Alambert), gdzie w XIX w. kontynuował go z rozmachem Comte. W XX wieku stolicą empiryzmu stał się Wiedeń. Już ta chronologiczna i geograficzna rozpiętość, jak i wielkie nazwiska klasyków  filozofii , każą traktować empiryzm  serio, jako poważnego krytyka i konkurenta racjonalizmu.

Tak też czyni się powszechnie, ale co do mnie, trudno mi nie być dysydentem w stosunku to tej rozpowszechnionej opinii. Ma to pewien powód biograficzny. Gdy pół wieku temu brałem udział w projekcie badawczym Zakładu Logiki PAN, dotyczącym metodologii nauk empirycznych, a kierowanym po mistrzowsku przez Kazimierza Ajdukiewicza, trafił mi do przekonania program mistrza: żeby metodologię nauk empirycznych uprawiać w sposób empiryczny. A jak można inaczej? Często uprawia się ją tak, że reguły metodologiczne wyprowadza się z założeń filozoficznych, a nie z obserwacji tego, jak postępują badacze osiągający doniosłe i ugruntowane wyniki.

Realizując program Ajdukiewicza,  oparłem mój do niego wkład  na dwóch klasycznych dziełach przyrodniczych, które tym się cechowały, że opisywały   nie tylko wyniki badań,  lecz także ich empiryczne podstawy w formie bardzo szczegółowych sprawozdań z  eksperymentów. Jedno z tych dzieł to „Odruchy warunkowe” Pawłowa, a drugie „Optyka” Newtona. Tym drugim zająłem się szerzej, a wnioski przedstawiłem po latach w artykule omawiającym ideę  racjonalizmu pod kątem wkładu Szkoły Lwowsko-Warszawskiej.

Dysponując uzyskanym z „Optyki” zasobem zdań sprawozdawczych, skonfrontowałem to z teorią zdań sprawozdawczych (Protokollsätze) rozwijaną przez Rudolfa Carnapa w środowisku awangardy ówczesnych empirystów, jaką było Koło Wiedeńskie. Zdania sprawozdawcze miały się  znajdować u podstaw teorii empirycznej jako jej zdania pierwotne, a więc nie  zakładające żadnej teorii; z nich wyprowadzałoby się logicznie twierdzenia teorii empirycznej. Takie dystansowanie się w punkcie wyjścia nauki od wszelkich założeń teoretycznych miało gwarantować najwyższą pewność. Carnap dobierał takie proste przykłady, jak „to jest czerwone”, „to jest kuliste”, „tu teraz gorąco”, „tamto się porusza”.

Wygląda to na program obiecujący nauce najwyższy poziom ścisłości, ale jest to obietnica nie do wykonania. Po pierwsze, w realnej nauce nie ma takich zdań sprawozdawczych, które posuwałyby ją naprzód, a nie zakładały jakiejś teorii. Jeśli mają one uzasadniać prawa przyrody, to trzeba stosować pomiar, a więc założyć pewną teorię matematyczną, oraz stosować przyrządy do eksperymentów a więc założyć teorię fizyczną dotyczącą funkcjonowania tych przyrządów, np. pryzmatu czy lunety. Ze zdań tak prostych, jak „tu leci mucha”, nie wyprowadzi się praw mechaniki, ani praw termodynamiki ze zdania
„jest mi teraz gorąco”.

Po drugie, nie ma takich reguł logiki, które pozwoliłyby wyprowadzać prawa nauki z Carnapowskich Protokollsätze. Empirystom z Koła Wiedeńskiego marzyło się stworzenie logiki do wyprowadzania ogólnych praw nauki z jednostkowych zdań sprawozdawczych, ale minęło blisko sto lat, a nic takiego nie powstało. A w ciągu tego stulecia fizyka, astronomia, biologia, kosmologia, informatyka osiągnęły sukcesy tak zawrotne, że nie uwierzyłby w nie nikt sto lat temu, gdyby je przepowiadał jakiś prorok (uznano by raczej, że prorok oszalał). Takie są zdumiewające wyniki badań, choć badaczom nie przychodziło nawet na myśl, żeby w celu ich osiągnięcia zapoznać się z epistemologią i metodologią empiryzmu.

To prawda, że nie przykładali się też do studiowania filozofii racjonalizmu, ale nie musieli uczyć się jej od filozofów. Sami taką teorię tworzą niejako spontanicznie, kierując się doświadczeniem i zdroworozsądkową intuicją. Gdy Einstein przystępuje do formułowania i uzasadniania teorii względności, a Heisenberg teorii kwantów, jeden i drugi udaje się do matematyki po teorię nadającą się na model postrzeganej przezeń intuicyjnie rzeczywistości empirycznej. Potrzebuje więc najpierw prawd rozumowych matematyki, branych z umysłowej intuicji, żeby dostać teorię empiryczną, którą będzie potem testował doświadczalnie.

Po co więc zajmować się racjonalizmem, skoro nauka i tak nim żyje, i tak się doń stosuje? Czy nie jest to wyważanie otwartych drzwi? Owszem istnieje ważna do zajmowania się racja, mianowicie aspekt światopoglądowy idei racjonalizmu. Rzutuje on na tak ważne dziś zagadnienie, jak kwestia sztucznej inteligencji. Kto wyznaje światopogląd racjonalistyczny, nie będzie skłonny wierzyć w roboty zdolne do tak twórczych i dalekosiężnych aktów intuicji, jak te, które zawdzięczamy geniuszowi Newtona, Leibniza, Einsteina, Heisenberga.

Jest to rozległy temat, zasługujący na osobne studium. Może warto go sobie zaplanować na rok 2017 — w ramach noworocznych postanowień?

Opublikowano Epistemologia i ontologia, Filozofia informatyki, Filozofia nauki, Logika i metodologia, Światopogląd informatyczny, Światopogląd racjonalistyczny | 11 komentarzy

Czy świat jest matematyczny (a nie tylko matematyzowalny)?

Obecny wpis kieruję przede wszystkim (choć nie tylko) do studentów wydziału WAiNS PW, którzy na kolejnych zajęciach z przedmiotu „Nauka a światopogląd” będą  dyskutować temat wskazany w tytule wpisu. Przed rozpoczęciem dyskusji – i tej na żywo, i tej w internecie – wyjaśnię krótko, co będziemy rozumieć pod pojęciami matematyczności i matematyzowalności świata.

Pojęcie pierwsze jest silniejsze, a dotyczy świata rozpatrywanego niezależnie od poznających go podmiotów (czyli ludzi). Jak powiedzieliby filozofowie: ma charakter ontologiczny. Zgodnie z tym jego charakterem, świat jest matematyczny w swej istocie –  to znaczy najbardziej istotne własności świata  są odzwierciedlone w zasadach, obiektach i twierdzeniach matematyki (splecionych niezwykle mocno z prawami nauk przyrodniczych, jak fizyka czy chemia).
Tak postrzegał rzeczywistość Platon – dla którego świat realny był jakimś niedoskonałym urzeczywistnieniem czy też przejawianiem się  doskonałego i niezmiennego uniwersum idei (w tym: matematycznych). Tak myślał zapewne Galileusz – gdy formułował słynny sąd, iż „Księga przyrody jest napisana językiem matematyki”. A także Leibniz – przyrównujący Stwórcę i Animatora świata do operującego na liczbach matematyka (w jednym z jego dzieł czytamy: „Gdy Bóg rachuje, staje się świat”).
Tak sądzi wreszcie wielu współczesnych ludzi nauki – chociażby Roger Penrose czy Michał Heller.
Jednym słowem: świat matematyczny to świat przeniknięty jakimś wewnętrznym porządkiem (harmonią), którego istotne rysy oddaje przede wszystkim matematyka (jeśli nie sama, to sprzęgnięta z naukami przyrodniczymi).

Pojęcie drugie –  matematyzowalności –  odnosi się po części do świata, a po części do człowieka, który za pomocą matematycznych narzędzi świat opisuje i  przekształca. Ma zatem wymiar epistemologiczny i praktyczny.
Światu przysługuje cecha matematyzowalności (słabsza od matematyczności), ponieważ poddaje się on fragmentarycznie matematycznym opisom i opartym na matematyce przekształceniom. Tak naprawdę jednak to w nas ludziach tkwi potrzeba/zdolność matematyzowania. I to my właśnie, w wyniku wielowiekowego wysiłku tak a nie inaczej ukształtowanych  intelektów, uczyniliśmy świat matematycznym.
Są to poglądy ostrożne w stosunku do świata (nie wiadomo, jaki w swojej istocie jest), ale dosyć śmiałe w stosunku do człowieka (w jego naturę wpisuje się potrzeba porządku i porządkowania). Ten typ myślenia charakteryzuje bardziej Arystotelesa niż Platona, bardziej Kanta niż Leibniza, bardziej matematycznych formalistów (z Hilbertem na czele) niż platoników.

Tyle tytułem wstępnych wyjaśnień i zachęty do dalszej dyskusji…

Podstawą dyskusji proponuję uczynić:

A) argumenty nadesłane przez studentów wydziału WAiNS PW,

B) dwa historyczne wpisy blogowe:
Czy świat jest matematyczny?
Matematyka–Człowiek–Świat,

C) slajdy do wykładu wygłoszonego na ostatnich zajęciach,

D) pewien popularno-naukowy film (z udziałem R. Penrose’a i G. Chaitina).

A zatem… jak Państwo uważacie:

Czy świat jest po prostu MATEMATYCZNY (taka jest jego istota), czy raczej MATEMATYZOWALNY (i zmatematyzowany przez człowieka)… ?
I jakie argumenty za Państwa poglądami przemawiają…?

Opublikowano Dydaktyka logiki i filozofii | Otagowano , | 5 komentarzy