Optymizm poznawczy Hilberta, Gödla i Turinga
czyli pankomputacjonizm w wersji epistemicznej

Obecny wpis jest moim głosem w dyskusji na międzyuczelnianym (IFiS PAN, IF UW, środowisko filozoficzne PW) posiedzeniu seminarium pt. “Ku filozofii informatycznej”, 17.XI.2020.  Dwa główne na tym posiedzeniu odczyty, profesorów Pawła Polaka (“Filozofia informatyki, o jakiej nie śniło się  informatykom”)  i Kazimierza Trzęsickiego (“Filozofia informatyczna i paradygmat Turinga”), mają pewien wspólny wątek — pankomputacjonizm, do którego chciałbym się odnieść w tych uwagach jako do szczególnie wyrazistej gałęzi filozofii informatycznej. Dobre tło dla tych uwag stanowi wprowadzenie do seminarium, autorstwa doktora Pawła Stacewicza.

§1. Anty-limitatywne  twierdzenie Gödla, 1936, ilustrujące epistemiczny pankomputacjonizm jako gałąź filozofii informatycznej.

Posługując się terminem “pankomputacjonizm epistemiczny” należy wyjaśnić, od jakiego innego kierunku ma go odróżniać ten przymiotnik.  Rzecz jest warta pilnej uwagi, bowiem ów inny kierunek jest rozległymi frapującym działem filozofii informatycznej.  Proponuje określać go mianem pankomputacjonizm ontyczny, wkracza on bowiem w kwestię natury bytu glosząc myśl że podstawowym tworzywem świata nie są elementarne cząstki materii lecz bity czyli elementarne cząstki informacji.  Wyraża tę myśl maksyma Johna Wheelera it from bit (można to oddać jako “byt z bitów”).  Cała rzeczywistość jest według tej koncepcji gigantycznym komputerem cyfrowym przetwarzającym bity wedle algorytmu kierującego ewolucją wszechświata.

Jakkolwiek fantastycznie brzmi ta koncepcja, zasługuje ona na uwagę, skoro opowiada się za nią grupa tak wybitnych fizyków kwantowych i  kosmologów, jak  omawiany w odczycie prof. Trzęsickiego Konrad Zuse,  wspomniany wyżej John Wheeler, a także Stephen Wolfram, Ed Fredkin, Frank Tipler i inni.

Uznawszy, że skierowanie do tekstu Trzęsickiego pozwala wspomnieć w paru tylko słowach  komputacjonizm ontyczny,  przechodzę do kwestii pankomputacjonizmu w wersji epistemicznej.  Oto doniosłe stwierdzenie Gödla, dobrze się nadające na drogowskaz ku tej części filozofii informatycznej, jaką jest epistemiczny pankomputacjonizm.

Der Übergang zur Logik der nächst höheren Stufe bewirkt also nicht bloß, daß gewisse früher unbeweisbare Sätze beweisbar zu werden, sondern auch daß  unendlich viele der schon vorhandenen Beweise außerordentlich stark abgekürzt werden können. — “Über die Lange von Beweisen”

Powiada w tym ustępie Gödel, że przejście do wyższego rzędu logiki powoduje nie tylko to, że dadzą się dowieść pewne twierdzenia dotąd niedowodliwe, lecz także to, że nieskończenie wiele już istniejących dowodów ulega nadzwyczajnemu skróceniu.  Ciekawą tego egzemplifikacją w praktyce matematycznej jest w aksjomatyce Peano przejście od aksjomatu indukcji pierwszego rzędu do sformułowania w logice drugiego rzędu.

Dowód w rozumieniu tak Gödla jak  iHilberta jest to dowód sformalizowany, a więc wykonalny  lub sprawdzalny dla maszyny cyfrowej. Znaczy to, że każdy problem matematyczny da się rozwiązać algorytmicznie czyli obliczeniowo. W tym sensie ów pogląd Gödla zasługuje na określenie pankomputacjonizm, a przydawka epistemiczy odróżnia go od ontycznego.

Algorytmiczne rozwiązywanie kolejnych  problemów poprzez wspinanie się na coraz wyższe rzędy logiki  jest wymowną  ilustrację fenomenu poznawczego, jakim jest twórcza konceptualizacja poprzez postulaty znaczeniowe (meaning postulates w sensie Carnapa 1947 ).  Szczególnie ważnym ważnym dla postępu nauki środkiem są  aksjomaty w teoriach sformalizowanych. Zachodzi to także w rozważanym przykładzie Gödla ponieważ każdy nowy rząd logiki jest określany przez swoiste dlań aksjomaty.

Tenże przypadek, ujawniając dobitnie doniosła i niezbywalną rolę filozofii w informatyce, harmonizuje z  wypowiedzią prof.Polaka, że “filozofia okazuje się dla przyszłości informatyki równie ważna co umiejętności techniczne i ścisła wiedza”. Istotnie, żeby informatyka  była zdolna do algorytmicznego rozwiązywania problemów w tak wydajny sposób, musi przyjąć ontologię platońską w sensie istnienia uniwersaliów pojętych jako  zbiory w sensie teorii mnogości.  Antyplatońska filozofia nominalizmu, np. reizm Kotarbińskiego, jest w tym względzie bezradna.

Twórcza konceptualizacja czyli inwencja pojęciowa to czynnik fundamentalny,   obecny  na każdym kroku  postępu wiedzy. Spektakularnym przykładem takiej odkrywczości jest  pojęcie zera. Poświęca mu wiele uwagi odczyt Trzęsickiego, poprzestanę więc na zauważeniu, że bez obecności tego obiektu  w świecie liczb nie byłoby nawet najprostszych algorytmów czterech działań arytmetycznych. Gdyby przyjąć filozofię, które nie dopuszcza takich bytów jak zero, nigdy byśmy się nie doczekali  maszyny Turinga.

Optymistyczny pankomputacjonizm Gödla buduje się na założeniu, że gdy do rozwiązania jakiegoś problemu  brak nam algorytmu, to należycie usilna praca inwencji pojęciowej doprowadzi do znalezienia pojęć, które po sprecyzowaniu  przez aksjomatyzację oraz sformalizowaniu teorii aksjomatycznej  dostarczy potrzebnego algorytmu.

§.2.  Pankomputacjonizm Gödla  a stanowiska Hilberta  i Turinga

§2.1.  Moje propozycje w tej kwestii znajdują się m.in.  w następujących artykułach, dostępnych w elektronicznych wersjach periodyków i w bazach danych po wklejeniu w wyszukiwarce całego tytułu.

Does Science Progress towards Ever Higher Solvability through Feedbacks between Insights and Routines?Studia Semiotyczne“, tom 32 nr 2, 2018. Odcinki 1.4,  2.2, 3.1,  3.2, 5.1, 5.2.

Jako komentarz do zwrotu Feedbacks between Insights and Routines  niech posłużą dwie wypowiedzi koryfeuszy informatyki.  Pierwsza pochodzi od Gregory Chaitina, druga od Donalda Knutha. Chaitin wyjaśnia, co nas upoważnia do epistemicznego pankomputacjonizmu  w matematyce pomimo Gödlowskiego dowodu jej niezupełności.

Gödel’s own belief was that in spite of his incompleteness theorem there is in fact no limit to what mathematicians can achieve by using their intuition and creativity instead of depending only on logic and the axiomatic method. He believed that any important mathematical question could eventually be settled, if necessary by adding new fundamental principles to math, that is, new axioms or postulates. Note however that this implies that the concept of mathematical truth becomes something dynamic that evolves, that changes with time, as opposed to the traditional view that mathematical truth is static
and eternal. […]  In discovering and creating new mathematics, mathematicians do base themselves on intuition and inspiration, on unconscious motivations and impulses, and on their aesthetic sense, just like any creative artist would.

Z kolei, Knuth zwraca uwagę, że  osiągnięte dzięki twórczej intuicji algorytmy pomagają  tejże intuicji  docierać do  bogactwa interesujących własności obiektów matematycznych.

Być może największym  odkryciem będącym rezultatem wprowadzenia komputerów okaże się to, że algorytmom, jako przedmiotom badania, przysługuje niezwykłe bogactwo interesujących własności oraz to, że algorytmiczny punkt widzenia jest użytecznym sposobem organizacji wiedzy w ogólności.  […] ˙Najbardziej wartościowym elementem edukacji naukowej czy technicznej są służące ogólnym celom narzędzia umysłowe, które będą służyły przez całe życie.  Szacuję, że język naturalny i matematyka są najważniejszymi takimi narzędziami, a informatyka stanowi trzecie narzędzie.

Tę myśl Knutha rozwija P.Stacewicz we wpisie “Algorytmiczne podejście do zdobywania, zapisywania i przekazywania wiedzy”, który następuje po obecnym.

§2.2. Inną moją pozycją, która traktuje szerzej o zagadnieniach poruszanych w obecnym tekście jest artykuł: The progress of science from a computational point of view: the drive towards ever higher solvability – “Foundations of Computing and Decision Sciences“, Vol.44, No~1, 2019. Odcinki  3 i 4.

Tę optymistyczną myśl, że  dla każdego matematycznego problemu istnieje w  0biektywnym świecie jestestw matematycznych rozwiązujący go algorytm, do którego zdoła dotrzeć po jakimś  czasie myśl ludzka (o ile starczy na to czasu trwania cywilizacji),  analizuje wszechstronny, a  kończący się  znakiem zapytania, fragment tekstu  Pawła Stacewicza  zatytułowany “A Discussion of Marciszewski’s Optimistic Realism” w książce “Interdisciplinary Investigations into the Lvov-Warsaw School” (redakcja A.Drabarek, J.Woleński, M.Radzki), Palgrave 2019.

Zdobywamy głębszy wgląd w powyższą myśl Gödla, biorąc pod uwagę  jego odwoływanie się do fenomenologii Husserla w próbach uzasadnienia epistemicznego optymizmu. Ujawnia się wtedy  zakorzenienie tej kwestii  w metafizyce, co nie rokuje szybkiego rozwiązania. Stanowi jednak atrakcyjne wyzwanie dla badaczy, których nie odstrasza ryzyko metafizycznych spekulacji.

Zaszufladkowano do kategorii Filozofia informatyki, Filozofia nauki | 18 komentarzy

Algorytmiczne podejście do zdobywania, zapisywania i przekazywania wiedzy. Pożądane czy szkodliwe?

Niniejszy wpis kieruję przede wszystkim, choć nie tylko, do studentów wydziału WEiTI Politechniki Warszawskiej, z którymi mam obecnie zajęcia filozoficzno-informatyczne.
W trakcie tych zajęć poruszyliśmy problem, który był dyskutowany na blogu już kilkukrotnie (zob. np. tutaj), ale wciąż wydaje mi się wart dalszej rozmowy. Chodzi o metodologiczną przydatność pojęcia algorytmu – pojęcia, które znamy przede wszystkim z informatyki.

Czy algorytmizacja, a więc jakiegoś rodzaju schematyzacja i automatyzacja, są w nauce czymś pożądanym? Czy wiedza zapisana, ale także przekazywana, w postaci algorytmicznej, może stymulować rozwój nauki? A może jest inaczej: zbytnia algorytmizacja powoduje, że w nauce i  edukacji zaczyna brakować inwencji i kreatywności?

Można też spytać szerzej: czy podejście algorytmiczne, które przeniknęło do naszej kultury głównie za sprawą wynalazku komputera, wywiera jakiś istotny wpływ na tęże kulturę – wpływ pozytywny lub negatywny? Mam tu na myśli kulturę pojętą całościowo, a nie tylko technicznie…

Bardzo proszę o swobodne wypowiedzi nawiązujące do powyższych pytań; poza które można oczywiście wykraczać :).

Jako lektury wprowadzające  do dyskusji proponuję:

tekst Donalda Knutha o roli algorytmów w informatyce
tekst Pawła Stacewicza o metodzie algorytmicznej

Oto kilka zaczerpniętych z tych prac cytatów:

Knuth:
Być może największym odkryciem będącym rezultatem wprowadzenia komputerów okaże się to, że algorytmom, jako przedmiotom badania, przysługuje niezwykłe bogactwo interesujących własności oraz to, że algorytmiczny punkt widzenia jest użytecznym sposobem organizacji wiedzy w ogólności.

Knuth:
Zacytujmy ponownie George’a Forsythe’a: „Najbardziej wartościowym elementem edukacji naukowej czy technicznej są służące ogólnym celom narzędzia umysłowe, które będą służyły przez całe życie. Szacuję, że język naturalny i matematyka są najważniejszymi takimi narzędziami, a informatyka stanowi trzecie narzędzie” (Forsythe 1959).

Knuth:
Próba sformalizowania czegoś w postaci algorytmu prowadzi do głębszego zrozumienia niż ma to miejsce, gdy po prostu próbuje się daną rzecz pojąć w sposób tradycyjny.

Stacewicz:
Można pokusić się nawet o stwierdzenie, że dana dyscyplina uzyskuje postać dojrzałą wówczas, gdy powstaje w jej obrębie pewien schematyczny rachunek pozwalający z powodzeniem stosować metodę algorytmiczną.

Stacewicz:
Do zalet metody algorytmicznej, należy niewątpliwie wiedzotwórczość, która przejawia się na dwóch poziomach: a) każde zastosowanie algorytmu do nowych danych skutkuje nową wiedzą (rozwiązaniem nowego problemu), b) trafnie dobrany zbiór algorytmów ułatwia penetrację danej dziedziny na nowym jakościowo poziomie (na niższym poziomie dokonała się już automatyzacja).

Serdecznie zapraszam do rozmowy, w której oczywiście sam chętnie wezmę udział.

Paweł Stacewicz.

Zaszufladkowano do kategorii Dydaktyka logiki i filozofii, Filozofia informatyki, Filozofia nauki, Światopogląd informatyczny | 11 komentarzy

Czy społeczeństwo informacyjne jest społeczeństwem ryzyka?

W drugiej połowie XX wieku amerykański socjolog Graham Bell upowszechnił określenie  „społeczeństwo informacyjne”, które miało uwypuklić przełomowe dla owego czasu przemiany cywilizacyjne – przemiany wpływające na ekonomię, gospodarkę i relacje społeczne.

Jako najbardziej istotne cechy społeczeństwa informacyjnego wskazywał:

— dominację sektora usług (a nie rolnictwa czy przemysłu),
— centralną rolę wiedzy teoretycznej (w tym: eksperckiej) w gospodarce,
— dominację specjalistów i naukowców strukturze zawodowej,
— tendencję do informatyzacji i globalizacji coraz większej liczby dziedzin,
— rozwój nowych technologii zarządzania informacją i wiedzą.

W tym samym mniej więcej czasie inny socjolog, tym razem niemiecki, Ulrich Beck, ukuł równie dobrze przemawiające do wyobraźni pojęcie „społeczeństwa ryzyka”.  Jako jeden z istotnych czynników ryzyka — tak w wymiarze cywilizacyjnym,  jak indywidualnym –  wskazywał rozwój nowoczesnych technologii. Między innymi: informatycznych.

„Nakładając” na siebie dwa powyższe pojęcia możemy postawić pytania:

♦  Czy faktycznie społeczeństwo informacyjne jest społeczeństwem ryzyka?
♦  Dlaczego?
♦  Jakiego rodzaju  ryzyka wchodzą w grę?
♦  A może  powszechny dostęp do informacji i technologii informacyjnych istotnie ogranicza ryzyko?

Bardzo proszę o swobodne wypowiedzi, które mogą obejmować również namysł nad tym, czym dzisiaj, dla Państwa,  jest społeczeństwo informacyjne?

Za luźną podstawę dyskusji proponuję poczynić dwa teksty socjologów, z antologii pod redakcją Józefa Lubacza pt. „W drodze do społeczeństwa informacyjnego”:

— tekst Andrzeja Sicińskiego: Społeczeństwo informacyjne: próba nazwania naszych czasów,
— tekst Tomasza Goban-Klasa: Społeczeństwo informacyjne i jego teoretycy

Gorąco zachęcam do rozmowy — Paweł Stacewicz

Zaszufladkowano do kategorii Retoryka, Światopogląd informatyczny, Światopogląd racjonalistyczny | 12 komentarzy

Wywiad o Cafe Aleph w czasopiśmie Filozofuj!

Witam wszystkich po dłuższej wakacyjnej przerwie :)

Miło mi poinformować, że we wrześniu ukazał się na łamach czasopisma Filozofuj! wywiad na temat bloga Cafe Aleph, a szerzej: na temat związków między informatyką i filozofią.
Rozmawiał ze mną Jakub Jernajczyk, który od czasu do czasu wypowiada się również w naszym blogu — np. o cyfrowym idealizmie.

Wywiad został podzielony na dwie części, które są dostępne tutaj:
część 1https://filozofuj.eu/miedzy-informatyka-i-filozofia-internetowe-dyskusje-w-cafe-aleph-1-wywiad/
część 2https://filozofuj.eu/miedzy-informatyka-i-filozofia-internetowe-dyskusje-w-cafe-aleph-2-wywiad/

Gorąco zachęcam do przeczytania calości, a na rozgrzewkę wklejam dwa krótkie fragmenty rozmowy.

JJ: Czy mógłby Pan krótko wyjaśnić, dlaczego interakcja filozofii z informatyką jest dla Pana taka istotna? Na pierwszy rzut oka mogłoby się przecież wydawać, że są to dziedziny niezwykle od siebie odległe.

PS: Faktycznie, na pierwszy rzut oka informatyka z filozofią różnią się od siebie jak ogień i woda. Informatyka to współczesność, zmiana, konkret, najnowsze technologie, miliony inżynierskich zastosowań. Filozofia z kolei sięga swoimi korzeniami starożytności, bada zagadnienia bardzo ogólne, stroni raczej od technologii i inżynierskich zastosowań.

Jak wiadomo jednak, przeciwieństwa przyciągają się. Filozofowie czerpią z informatyki pełnymi garściami: przyrównują umysł do komputera, zastanawiają się nad tym, czy maszyny mogłyby myśleć, rozważają na serio takie koncepcje, jak pankomputacjonizm, to znaczy teorię, wedle której wszelkie byty mają naturę obliczeniową.

Informatycy z kolei coraz bardziej łakną zrozumienia istoty swoich podstawowych pojęć, takich jak algorytm czy informacja. Interesują ich także kwestie etyczne, związane na przykład z coraz bardziej realną sztuczną inteligencją. Chcą też dobrze uchwycić, na czym polegają ograniczenia metod obliczeniowych. To wszystko zaś są zagadnienia filozoficzne, stawiane zresztą u zarania informatyki, na przykład przez Turinga…

JJ: Wybrana przez Panów nazwa bloga, Cafe Aleph nie wskazuje jednak na jakieś silne związki z informatyką. Kojarzy się raczej z podstawami matematyki, w szczególności z teorią zbiorów. „Alef zero”, na przykład, oznacza moc, a więc liczność, nieskończonego zbioru liczb naturalnych…

PS: Czy informatyka jednak nie została zbudowana na fundamentach logicznych, a szerzej matematycznych? Alef zero możemy uznać za symbol zbioru liczb naturalnych, a tak się składa, że komputery cyfrowe operują na danych, którym odpowiadają liczby naturalne. Każdy kod binarny – niezależnie od tego, czy reprezentuje dane tekstowe, dźwiękowe czy jakiekolwiek inne – można rozumieć jako liczbę naturalną. Alef zero wskazuje zatem na matematyczny fundament obliczeń cyfrowych. Jednocześnie jednak, ponieważ jest to symbol nieskończoności – nieskończoności przysługującej liczbom naturalnym – kieruje naszą uwagę na pewne kłopoty, które dotykają obliczeń cyfrowych. Mianowicie: za pomocą obliczeń tego typu nie można rozwiązać wielu istotnych problemów, ponieważ, mówiąc w uproszczeniu, wymagałoby to wykonania nieskończonej liczby kroków w skończonym czasie. Co ciekawe jednak, w matematyce istnieją inne jeszcze alefy, odpowiadające innego rodzaju liczbom niż naturalne (np. liczbom rzeczywistym) i być może dzięki obliczeniom opisywanym za pomocą tego rodzaju liczb, dałoby się rozwiązać zagadnienia nieobliczalne cyfrowo. Na blogu dyskutowaliśmy o tym wielokrotnie…

Jeszcze raz zachęcam do przeczytania całości :).
Wszelkie komentarze mile widziane — zarówno tutaj, pod wpisem, jak i pod wywiadem w Filozofuj!.

Pozdrawiam wszystkich — Paweł Stacewicz.

Zaszufladkowano do kategorii Dydaktyka logiki i filozofii, Filozofia nauki, Światopogląd informatyczny, Światopogląd racjonalistyczny | Dodaj komentarz

Wprowadzenie do semantyki prawa. Dyskusja nad książką Andrzeja Malca.

Z prawdziwą przyjemnością chciałbym zaprosić czytelników bloga do dyskusji nad książką Andrzeja Malca pt. “Wprowadzenie do semantyki prawa”.
Choć tytuł nie sugeruje tego wprost, jej treść jest mocno filozoficzna, a dokładniej rzecz biorąc, nawiązuje do pewnych rozstrzygnięć filozoficznych Tadeusza Kotarbińskiego i Bogusława Wolniewicza.

Książka jest dostępna w całości TUTAJ.

Proponuję, aby dyskusja toczyła się swobodnie bez postawionych wcześniej pytań :).
Za wstęp do niech niech posłuży recenzja, którą sporządził dr Roman Matuszewski z Uniwersytetu w Białymstoku.
Oto jej treść:

Książka została wydana przez Autora w roku 2018. Zawiera 126 numerowanych stron. We Wprowadzeniu i w Rozdziale I wyjaśnione są podstawowe pojęcia językowe i logiczne związane z prawem. Widać, że książka jest pomyślana jako wprowadzenie do języka prawa, badanego z perspektywy semantyki logicznej. Ważnym elementem tego rozdziału jest wyjaśnienie proponowanego sposobu interpretacji języka prawa. Tutaj Autor wyjaśnia różnice między „wykładnią” (podstawowym pojęciem w prawie)  a „interpretacją w prawie” – to bardzo ciekawe ujęcie, pokazujące semantyczną różnicę między nimi. W oparciu o przykłady wyjaśniono też: norma prawna, wypowiedź normatywna, reguła prawna.

Następnie Autor pisze o teorii ontologii (metafizyki) sytuacji Bogusława Wolniewicza – jest to najważniejsze narzędzie formalne tych badań. Wyjaśniono też powiązanie teorii Wolniewicza z Traktatem Wittgensteina. Ważną rzeczą jest omówienie kategoryzacji dziedziny prawa. Korzystając z teorii Wittgensteina, uzupełnionej przez reizm Kotarbińskiego, Autor wyjaśnia bardzo złożone sytuacje semantyczne języka prawa, opisuje dziedziny przedmiotów konkretnych i konkretyzm – ważne cechy klasyfikacji w prawie. Wydaje się, że użycie  własności i relacji elementów zbioru przyczyniło się do istotnego wyjaśnienia semantycznych cech języka prawa – służą one do definicji kategorii bytów w dziedzinie prawa. Na koniec Rozdziału I Autor zajmuje się aspektami logicznymi języka prawa – wyjaśnieniem prawdziwości i fałszywości w teorii prawa. Całe to wprowadzenie kończy podziałem modelu semantycznego na model dziedziny prawa oraz model języka prawa.

 W Rozdziale II analizuje się model dziedziny prawa. Tutaj mamy formalnie opisane pojęcia: zdarzenie oraz rodzaje zdarzeń − są określone warunki jakie powinno spełniać zdarzenie aby było czynem. Zdarzenie przyczynowo-skutkowe jest elementem tej dyskusji. W tym rozdziale najważniejszym wynikiem jest próba zastosowania teorii mnogości i teorii krat, korzystając ze wspomnianej wyżej teorii Wolniewicza, do konstrukcji modelu dziedziny prawa. A dokładniej mówiąc: pokazana jest klasyfikacja zdarzeń prawnych. Wprowadzone pojęcie reguły prawnej, zdefiniowane formalnie, jest wyjaśnione dokładnie także przy pomocy praktycznych przykładów.

Rozdział III wprowadza model języka prawnego, korzystając w opisie z rachunku predykatów. Ciekawym rozwiązaniem jest wypisanie kilkudziesięciu predykatów sytuacji prawnych. Nie jest wyjaśnione jak ma się to do pełności opisu sytuacji prawnych. Następnym krokiem powinna być podana aksjomatyka i reguły wnioskowania wprowadzanej teorii, sprawdzenie czy taka teoria jest niesprzeczna, czy jest zupełna itd.  Ale Autor wyjaśnia, że zawęził ten krok do ogólnego „przedstawienia, jak język prawa postrzegany jest z perspektywy logicznej”. Wydaje się, że zapowiadane w książce aksjomatyka i reguły wnioskowania powinny być podjęte w kolejnych badaniach Autora i dobrze by uzupełniły tę teorię. W recenzowanej książce został zaproponowany  inny sposób określenia własności tej teorii, a mianowicie – bezpośrednie odniesienie do modelu dziedziny prawa. To ważne wyjaśnienie nazwane jest interpretacją (podanych wcześniej) kilkudziesięciu predykatów sytuacji prawnych w modelu dziedziny prawa. Ta przedstawiona interpretacja jest przykładowa – jeśli pojawią się inne predykaty, zostaną one zinterpretowane według podanej procedury.

Na zakończenie rozdziału podana jest bardzo ciekawa klasyfikacja norm prawnych oraz schematów zdarzeń związanych z tymi normami. Klasyfikacja opisana jest formalnie z wykorzystaniem rachunku kwantyfikatorów. W celu rozstrzygania prawdziwości i fałszywości norm Autor używa na stronie 82 schemat indukcyjnego badania prawdziwości zdań. Prowadzi to do przedstawienia kilkudziesięciu przypadków prawdziwych zdań elementarnych języka (czyli zdań nie zawierających spójników zdaniowych i kwantyfikatorów), utworzonych z wyróżnionych, podanych wcześniej predykatów. Na tej podstawie określa się następnie prawdziwość norm warunkowych nakazujących, zakazujących lub dozwalających. Konsekwencją tej klasyfikacji i schematu indukcyjnego badania prawdziwości zdań jest pokazanie wynikania norm.

Ostatni rozdział obejmuje wyjaśnienia związane z semantyką języka prawa, w dużej części opisanego formalnie. To podejście pozwala bardziej precyzyjnie wyjaśnić cechy „normy prawnej”, odróżnić od „wypowiedzi normatywnej” i od „zdania deontycznego”. Kolejny rezultat opisu formalnego, to precyzyjne wyjaśnienie pojęcia „konkretyzacja normy abstrakcyjnej” – często wykorzystywanego w wykładniach prawa. Podane przykłady stosowania różnych wykładni prawa dobrze uzasadniają użyteczność tego formalnego opisu. Na koniec Autor próbuje wykorzystać swój aparat formalny do opisu relacji norm prawa naturalnego do norm prawa stanowionego.

Podsumowując – książka jest bardzo ciekawym i nowatorskim podejściem do opisu semantyki języka prawa, wykorzystującym znany system formalny Wolniewicza. Dużą korzyścią wynikającą z takiego podejścia jest jednoznaczne wyjaśnienie wielu pojęć prawnych, wprowadzenie porządku metodologicznego do opisu oraz przygotowanie formalne do systemu realizującego automatyczne rozumowania w systemie prawnym.

Roman Matuszewski (UwB)
Warszawa, 20.07.2020

Od siebie dodam, że niektóre wątki swojej książki dr Andrzej Malec referował na powiązanym z blogiem seminarium.
Polecam zapoznanie się z abstraktem jego wystąpienia.

Pozdrawiam i gorąco zachęcam do dyskusji — Paweł Stacewicz.

Zaszufladkowano do kategorii Dialogi wokół recenzji, Dydaktyka logiki i filozofii, Epistemologia i ontologia, Logika i metodologia, Światopogląd racjonalistyczny | 14 komentarzy

Testy, testy, testy… na sztuczną inteligencję

Testy, testy, testy…. Tym hasłem bombardują nas od tygodni lekarze, politycy i publicyści – nie celując, rzecz jasna, w wirusy komputerowe, a tym bardziej w sztuczną inteligencję.  My jednak, sprowokowani ogólną atmosferą testowania i diagnozowania (oczywiście ważnego i potrzebnego),  weźmiemy za przedmiot dyskusji właśnie sztuczną inteligencję. Dokładniej zaś: możliwe testy, które mogłyby potwierdzić, że coś, to znaczy jakiś program, system lub maszyna, ją posiada.

W ramach rozgrzewki przed dyskusją warto rozważyć następujące pytania:

Czym w ogóle jest inteligencja (w szczególności: ludzka)?

Czy testując system informatyczny pod kątem inteligencji, wystarczy obserwować wyniki jego działania (jakie problemy rozwiązuje, jak szybko to robi, w jaki sposób komunikuje i wyjaśnia rozwiązania…), czy może trzeba zajrzeć do jego wnętrza?

A może potrzebny jest inny jeszcze rodzaj testu…?

Zagadnienie inteligencji maszyn, w szczególności zaś drugie z powyższych pytań, postawił po raz pierwszy Alan Turing w słynnym artykule Computing Machinery and Intelligence. Przedstawił w nim werbalny test nierozróżnialności,  nazywany dzisiaj Testem Turinga (TT).
Mówiąc najkrócej, idea testu jest następująca: jeśli w wyniku swobodnej rozmowy z maszyną, rozmowy na dowolny temat, nie potrafimy odróżnić maszyny od człowieka, winniśmy uznać ją za inteligentną (w sensie przypisywanym człowiekowi).

Sam Turing opisał swój pomysł następująco:

Nową postać problemu (PS: problemu testowania myślenia lub inteligencji maszyn) można opisać przy pomocy gry, którą nazywamy „grą w naśladownictwo”. W grze tej biorą udział trzy osoby: mężczyzna (A), kobieta (B) i człowiek zadający pytania (C), który może być dowolnej płci. Pytający znajduje się w pokoju oddzielonym od pokoju zajmowanego przez dwu pozostałych. Jego zadaniem w grze jest rozstrzygnięcie, który z dwu pozostałych uczestników gry jest mężczyzną, a który kobietą. Zna ich on jako X i Y i przy końcu gry mówi: „X jest A, a Y jest B” lub „X jest B, a Y jest A”.

Pytającemu wolno zadawać pytania A i B w ten sposób:

C: Proszę X, aby mi powiedział jak długie ma włosy?

Teraz przypuśćmy, że X jest faktycznie A, wobec czego A musi odpowiedzieć. Celem A w grze jest dołożenie wszelkich starań, aby C źle go zidentyfikował. Wobec tego jego odpowiedź mogłaby być następująca: „Moje włosy są ostrzyżone, a najdłuższe kosmyki mają około dziewięć cali długości”.

Aby brzmienie głosu nie mogło pomóc pytającemu w dokonaniu identyfikacji, odpowiedzi powinny być pisane odręcznie, a jeszcze lepiej na maszynie. Idealnym środkiem porozumiewania się między pokojami jest dalekopis. Pytania i odpowiedzi mogą być też przekazywane przez pośrednika.

(…)

Teraz zapytujemy się: „Co stanie się, gdy maszyna zastąpi A w tej grze?”. Czy pytający będzie decydował błędnie tak samo często jak wtedy, gdy w grze bierze udział mężczyzna i kobieta? Pytania te zastąpią nasze pytanie początkowe” „Czy maszyny mogą myśleć?”.

Zaletą nowego problemu jest ostre rozgraniczenie między fizycznymi i intelektualnymi możliwościami człowieka. Żaden inżynier ani chemik nie twierdzi, że potrafi wyprodukować materiał, który niczym by się nie różnił od skóry ludzkiej. Możliwe, że kiedyś można będzie to zrobić, ale nawet gdybyśmy rozporządzali takim wynalazkiem, to i tak nie miałoby większego sensu usiłowanie ubrania myślącej maszyny w takie sztuczne ciało w celu uczynienia jej bardziej ludzką. To nasze przekonanie znajduje odbicie w sposobie postawienia problemu, a mianowicie w postaci zakazu, który nie pozwala pytającemu widzieć, dotykać i słyszeć pozostałych uczestników gry.

Niektóre inne zalety proponowanego kryterium można pokazać na przykładzie pytań i odpowiedzi. A zatem:

P: Napisz mi sonet na temat Forth Bridge.

O: Nie licz na mnie. Nigdy nie umiałem pisać wierszy.

P: Dodaj 34 957 do 70 764.

O: (Po 30-sekundowym namyśle odpowiada) 105 621.

P: Czy grasz w szachy?

O: Tak.

P: Mam K na K1 i innych figur nie mam. Ty masz tylko K na K6 i R na R1. Jest twój ruch. Jakie zrobisz posunięcie?

O: (Po 15-sekundowym namyśle) R-R8 mat.

Wydaje się, że metoda pytań i odpowiedzi nadaje się do wprowadzenia do prawie każdej dziedziny ludzkiej działalności, do której chcemy ją wprowadzić.

Zaproponowana przez Turinga metoda – o  której więcej można przeczytać w oryginalnym artykule – nie wszystkich przekonuje. I dlatego właśnie poddajemy ją pod dyskusję :).

Z jednej strony ma wyraźne zalety. Na przykład: abstrahuje od trudnouchwytnych zjawisk psychologicznych typu świadomość czy przeżycia podmiotu poznającego; a ponadto, nawiązuje do faktu, że w przypadku ludzi to język właśnie (wypowiedzi językowe) jest najlepszym wyrazem myśli.
Z drugiej strony jednak, rodzi wiele pytań, te zaś mogą prowadzić do przekonania o bezużyteczności podejścia Turinga.  Przykładowo: czy obserwacja zachowania maszyny (w tym przypadku: werbalnego), a nie jej wewnętrznych struktur i operacji, jest wystarczająca? Czy sam wynik maszyny pozwala wnioskować o jej inteligencji?

Ku której opinii Państwo się skłaniacie: aprobującej TT,  czy odrzucającej go?

A jeśli to drugie, to jak należy TT wzmocnić?
Lub ogólniej: jaki inny test należałoby zastosować, aby móc zasadnie stwierdzać inteligencję maszyn?

A zatem: testy, testy, testy…
Czekamy na pomysły i wspierające je argumenty!
Jakiego rodzaju testy na inteligencję informatycznych maszyn wydają się Państwu adekwatne?

Zachęcamy gorąco do rozmowy – Paweł Stacewicz i Marcin Koszowy.

Zaszufladkowano do kategorii Bez kategorii, Dydaktyka logiki i filozofii, Filozofia informatyki, Filozofia nauki, Światopogląd informatyczny, Światopogląd racjonalistyczny | 101 komentarzy

Czy falsyfikacjonizm hipotetyczno-dedukcyjny w wersji Karla Poppera jest nadal aktualny?

Obecny wpis umieszczam w imieniu Doktora Michała Stelmacha, który chciałby wywołać nim dyskusję ze studentami Politechniki Warszawskiej…
Oczywiście zapraszamy do niej wszystkich czytelników bloga!

Pytanie tytułowe dotyczy aktualności pewnej dobrze znanej z historii filozofii nauki myśli – myśli Karla Rajmunda Poppera.
Jej główne punkty, w postaci nieformalnej, można streścić następująco:

Kryterium naukowości w postaci potencjalnej falsyfikowalności wyrażeń Popper twierdzi, że naukowe mogą być tylko takie twierdzenia, które dają się obalić; jeśli twierdzenie jest odporne na wszelkie próby odrzucenia i potwierdzają je wszystkie fakty należące do uniwersum, to twierdzenie albo jest tautologiczne, albo nieracjonalne = nienaukowe.

Mechanizm rozwoju nauki Popper twierdzi, że mechanizm ten nie jest kumulatywny, a więc nie chodzi o to, że w nauce wiemy coraz więcej, gromadzimy kolejne fakty, kolejne ich opisy, ale raczej ewolucyjny, czyli nasze modele konkurują między sobą i w tym sensie dostosowują się do rzeczywistości, że rządzi tymczasowy zwycięzca, który może zostać wyparty przez obalenie i nadejście następcy.

Odrzucenie indukcji Popper twierdzi, że indukcja jest nieracjonalna, bowiem jest niekonkluzywna – jej wyniki nigdy nie są pewne; domaga się uzasadnienia – zasada indukcji bowiem nie jest tautologią; a uzasadnienie takie jest zbyt kosztowne logicznie, wręcz domaga się założeń o stałości funkcjonowania przyrody. Co więcej, jeśli w nauce mamy badać jak działa przyroda, a zasada indukcji musi najpierw założyć, że przyroda działa w sposób stały, to postępowanie nasze niebezpiecznie ciąży w stronę błędnego koła.

Dedukcyjne sprawdzanie teorii  Popper nie poprzestaje na krytyce. Twierdzi jednak, że powinniśmy (tak, „powinniśmy” – słowo wskazujące normatywny aspekt myśli Popperowskiej jest tu użyte świadomie) zastosować regułę wnioskowania, której koszt logiczny nie domagałby się od nas popadania w błędy. Twierdzi, że dobrze jest skorzystać z reguł logiki formalnej, które jako tautologie mają ten przywilej, że stosować je można właściwie „za darmo” (tak, to bardzo ciekawy fragment tej teorii). Proponuje zamiast zasady indukcji regułę modus tollendo tollens. Reguła ta każe nam uznać, że jeśli ze zdania ogólnego wynikają fałszywe konsekwencje, to zdanie ogóle jest również fałszywe. Naukowiec wykazujący, że z teorii wynikają fałszywe konsekwencje ma prawo uznać ją za obaloną, ale popperyzm nie jest nihilizmem, zatem w miejsce obalonej teorii naukowiec ma wręcz obowiązek (i to pod przykazaniem!) zaproponować jej następczynię. Badacz ma być twórczy i zarazem krytyczny. Ma proponować nietrywialne teorie, a zarazem nie oszczędzać ich za wszelką cenę, na przykład poprzez semantyczną reinterpretację terminów.

Opisy powyższe sformułowałem celowo w języku mówionym, tak aby blogowy wpis stanowił naturalne „przedłużenie” tradycyjnego wykładu.
Aby opisy te pogłębić i dotrzeć do sedna falsyfikacjonizmu, proponuję  następujące lektury:

https://sady.up.krakow.pl/filnauk.popper.logika.htm

https://plato.stanford.edu/entries/popper/

https://sady.up.krakow.pl/filnauk.sady.popper.htm

Otwieram zatem dyskusję.

Proponuję skupić się na następujących zagadnieniach:

Czy myśl Poppera jest rozpoznawalna i przydatna w dzisiejszej działalności naukowej? Czy myśl ta ma swoje zastosowanie w pracy inżyniera? Na jakim poziomie ogólności ustalenia Poppera są dziś uznawane za „naturalne” dla społeczności naukowej?

Czy może przeciwnie, Popper po długotrwałej krytyce nie ma już nic nietrywialnego do zaoferowania? A może w ogóle jest tak, że myśl Poppera nie była nigdy „aktualna” w znaczeniu „adekwatnie odzwierciedlająca na pewnym etapie rozwoju naukowego nasze ustalenia odnośnie wymagań stawianych teoriom”, a tylko „aktualna” w znaczeniu „modna”?

Czy myśl ta się już zestarzała, czy może nadal jest atrakcyjna?

Jeszcze raz zachęcam do rozmowy, w której można podejmować również inne tematy związane z koncepcją Poppera!

Pozdrawiam wszystkich – Michał Stelmach.

Zaszufladkowano do kategorii Dydaktyka logiki i filozofii, Filozofia nauki, Logika i metodologia, Światopogląd racjonalistyczny | 25 komentarzy

Debatująca sztuczna inteligencja

Obecny wpis umieszczam w blogu w imieniu Marcina Koszowego, który zajmuje się naukowo teorią argumentacji.
Tytuł wpisu łączy doskonale ideę naszego bloga, służącego przede wszystkim do  rozmów i debat, z tematyką, która jest w nim dość często poruszana, a więc sztuczną inteligencją. Mało tego, tytuł traktuje o maszynach, które potrafią rozmawiać, dyskutować i debatować – być może równie ciekawie jak nasi czytelnicy :).
Być może nawet, choć tu zapewne większość czytelników się uśmiechnie, jakiś internetowy chatbot tego typu przedstawi niżej swoje argumenty.
Zanim to jednak nastąpi, :-) , oddaję głos Marcinowi, któremu serdecznie dziękuję za przygotowanie niniejszego wpisu…

Wysiłki uczonych zmierzające do stworzenia argumentujących maszyn, które nie tylko brałyby udział w debatach, ale również rozstrzygały, która ze stron ma rację w sporze, sięgają przynajmniej czasów średniowiecznych. Opracowany w nowożytności przez Gottfrieda W. Leibniza kompleksowy projekt uniwersalnego języka matematycznego (lingua characteristica universalis), dzięki któremu możliwe byłoby dochodzenie do nowej wiedzy oraz rozstrzyganie sporów na drodze rachunkowej stał się jednym z kluczowych punktów odniesienia w badaniach nad sztuczną inteligencją. Rozwój technologii argumentacyjnych (zob. np. projekty realizowane przez ARG-tech – Centre for Argument Technology: https://www.arg-tech.org/index.php/projects/) oraz obliczeniowych modeli argumentacji (zob. np. materiały z międzynarodowych konferencji COMMA – Computational Models of Argument: http://comma.csc.liv.ac.uk/node/30) pokazuje  szerokie spektrum badań mających na celu pogłębienie rozumienia komunikacji naturalnej na potrzeby debatującej sztucznej inteligencji. Przykładową ilustracją potrzeby tworzenia obliczeniowych modeli strategii argumentacyjnych jest ich wykorzystywanie w konwersacjach prowadzonych przez chatboty. W jakim stopniu te i inne kierunki badań nad sztuczną inteligencją są w stanie przybliżyć nas do epoki argumentujących maszyn?

19 lutego 2019 roku odbyła się pierwsza w dziejach debata człowiek-maszyna  między Harishem Natarajanem, rekordzistą świata w liczbie wygranych debat konkursowych, a debatującą sztuczna inteligencją, projektem IBM Debater (https://www.research.ibm.com/artificial-intelligence/project-debater/). Sztuczna inteligencja nie tylko formułowała argumenty wyszukując w czasie rzeczywistym dostępne w sieci racje na rzecz bronionego stanowiska, ale również na bieżąco podejmowała próby zbijania argumentów przeciwnika. Debata mogła być śledzona z uwagą zbliżoną do zainteresowania pamiętnym meczem szachowym między Gari Kasparowem a komputerem Deep Blue w maju 1997 r. (wówczas wygrała maszyna) – z nadzieją dostarczenia nowego materiału do analiz i być może nowych odpowiedzi na pytania dotyczące możliwości i granic badań nad sztuczną inteligencją. Niech debata między IBM Debater a Harishem Natarajanem (jej pełny zapis jest dostępny pod adresem: https://www.youtube.com/watch?v=3_yy0dnIc58&t=1673s)  będzie okazją do wymiany na tym forum myśli na temat spodziewanych kierunków rozwoju technologii argumentacyjnych. W tej pierwszej debacie między człowiekiem a sztuczną inteligencją zdaniem publiczności zwyciężył Harish Natarajan, jednakże to nie jej rezultat (zwycięzcę wyłania publiczność), a przebieg może pozwolić na zdefiniowanie najbardziej istotnych kierunków badań nad argumentującymi maszynami.

Dyskusję na ten temat proponujemy zogniskować wokół dwóch stanowisk dotyczących wpływu debatującej sztucznej inteligencji na sposób prowadzenia debaty publicznej oraz traktowania tego typu debat jako źródła inspiracji dla badań nad sztuczną inteligencją:

      1. Projekty takie jak IBM Debater w znaczący sposób mogą oddziałać na przyszły sposób prowadzenia debat czyniąc je bardziej racjonalnymi (podawanie większej liczby rzeczowych argumentów na rzecz głoszonego stanowiska) i efektywnymi (większa skuteczność przekonywania krytycznie myślącego odbiorcy). Innymi słowy, sztuczna inteligencja biorąca na żywo udział w debacie, nie tylko wyszukująca w czasie rzeczywistym argumenty (takie jak na przykład najnowsze wyniki badań naukowych stanowiących racje dla głoszonego stanowiska), ale także potrafiąca zbijać argumenty drugiej strony sporu może wnieść całkowicie nową jakość do debaty.
      2. Debaty z udziałem IBM Debater, dzięki możliwości śledzenia dialogowych interakcji między człowiekiem a maszyną, mogą dostarczyć nowego materiału empirycznego, umożliwiającego badaczom sztucznej inteligencji znalezienie odpowiedzi na pytania typu: „w jakim kierunku będą rozwijać się techniki argumentowania i kontrargumentowania przez sztuczną inteligencję?” czy „w jakim kierunku będą rozwijać się techniki dialogowe sztucznej inteligencji takie jak np. szybka i celna riposta, racjonalna i skuteczna kontrargumentacja, czy też inteligentnie i trafnie dobrana analogia?”

Czy jesteście Państwo za, czy przeciw tak wyrażonym stanowiskom?
Zachęcamy do udziału w dyskusji oraz formułowania argumentów w sporze o przyszłe kierunki rozwoju debatującej sztucznej inteligencji.

Marcin Koszowy i Paweł Stacewicz

Zaszufladkowano do kategorii Bez kategorii | 67 komentarzy

Między nauką, filozofią i światopoglądem (w tym: informatycznym)

Serdecznie zapraszam do dyskusji, którą chciałbym sprząc ze swoim wystąpieniem online w ramach projektu popularyzatorskiego “Myśl jak naukowiec“.
Wystąpienie to będzie dotyczyć związków między naukami (głównie ścisłymi) a światopoglądem, zaś jego tematyczną oś będą stanowić następujące pytania:

1) Jak światopogląd ma się do filozofii, a jak do nauk (w szczególności ścisłych)?

2) Czy nauki wpływają na światopogląd? Które najsilniej?

3) Czy można mówić o światopoglądowym oddziaływaniu informatyki (w bardzo ogólnym sensie)?

4) Co to jest światopogląd informatyczny?

Robocze, a zatem i dyskusyjne, odpowiedzi zawiera następująca PREZENTACJA.

Do prezentacji tej będę odnosił się podczas SPOTKANIA online, które poprowadzi Pani Agnieszka Proszewska z Fundacji Optimum Pareto. Będzie to w środę, 29.04, o godzinie 18.30. Serdecznie zapraszam do udziału w nim.

Na dobry początek dyskusji blogowej – do której zachęcam zarówno uczestników w/w spotkania, jak i stałych czytelników bloga – proponuję pewien fragment mojego tekstu, który w nieco szerszej odsłonie można przeczytać TUTAJ.

Oto ten fragment:

Kluczowe dla niniejszego tekstu pojęcie światopoglądu pozostaje bardzo bliskie filozofii, ponieważ u źródeł filozoficznych dociekań tkwią bardzo mocno potrzeby światopoglądowe poszczególnych ludzi oraz złożonych z nich społeczności.

W wymiarze indywidualnym (i psychologicznym zarazem) można określić światopogląd jako zbiór podstawowych przekonań jednostki co do kwestii tak życiowo istotnych, jak struktura i poznawalność świata, wartości etyczno-moralne, istnienie Boga czy natura prawdy. W praktyce życiowej przekonania te działają niczym drogowskaz, wyznaczający jednostce cele i kierunki działań. Są więc czymś w rodzaju małej prywatnej filozofii człowieka, tak a nie inaczej ustosunkowującego się do świata.

W wymiarze społecznym jest światopogląd czymś filozofii jeszcze bliższym, ponieważ stanowi zjawisko intersubiektywne (wykraczające poza przeżycia i działania jednostki), dostatecznie dobrze utrwalone w świadomości wielu osób, znajdujące swój wstępny wyraz w charakterystycznych dla danej epoki dziełach sztuki, pracach naukowych czy nawet systemach ekonomicznych. I w tym właśnie sensie można mówić o światopoglądzie chrześcijańskim, romantycznym, racjonalistycznym, mechanicystycznym, czy wreszcie informatycznym (przy czym są to tyko wybrane przykłady). Jak wyjaśnimy dalej, owe ugruntowane społecznie typy poglądów mogą zarówno sprzyjać powstawaniu pewnych kierunków filozoficznych, jak i być przez niektóre systemy filozoficzne inspirowane.

Warto tutaj poruszyć jeszcze jedną kwestię. Otóż naukowe ujęcie światopoglądu rozumianego społecznie musi mieć charakter abstrakcyjny – tj. abstrahujący od przeżyć i przekonań konkretnych ludzi. W ujęciu takim chodzi o pewien wyidealizowany typ poglądów, który jednak ma nie tylko wartość naukową (jako coś poddającego się abstrakcyjnym analizom i porównaniom z innymi typami poglądów), ale również może  realnie kształtować – na zasadzie pojęciowego wzorca – światopoglądy poszczególnych ludzi.

ZAPRASZAM zatem do rozmowy…

Temat nie jest w naszym blogu nowy, ale mam nadzieję, że zyska nowe grono dyskutantów, :).

Pozdrawiam wszystkich — Paweł Stacewicz.

Zaszufladkowano do kategorii Bez kategorii, Dydaktyka logiki i filozofii, Filozofia informatyki, Filozofia nauki, Światopogląd informatyczny, Światopogląd racjonalistyczny | 18 komentarzy

Od informacji do wiedzy

Kolejną dyskusję na temat informacji chciałbym ukierunkować na lepsze zrozumienie pojęcia wiedzy –  którą rozumie się często, być może najczęściej, jako pewną postać informacji.

Przy takim podejściu za wiedzę uznaje się informację dostatecznie dobrze uzasadnioną, przy czym dołączone do informacji uzasadnienie dotyczy jej domniemanej prawdziwości.
Przykładowo: jeśli ktoś powtarza za pewnym źródłem, że  „hylemorfizm to koncepcja metafizyczna Arystotelesa”, to dopóki rozumie to i powtarza, nie upewniwszy się jednak co do prawdziwości głoszonej tezy, dopóty pozostaje na poziomie informacji. Jeśli jednak odnajdzie opis wspomnianej koncepcji w pismach Arystotelesa albo zweryfikuje posiadaną informację w jakimś naukowym opracowaniu, to uzyska WIEDZĘ. Podobnie będzie ze stwierdzeniem, że „sylogizm Barbara jest niezawodnym schematem wnioskowania”.  Choć w jego przypadku przejście do wiedzy będzie wymagało innego rodzaju uzasadnienia, to znaczy powołania się na formalny dowód (a nie sprawdzenie stanu faktycznego).
Dla bycia wiedzą nie wystarcza zatem rozumienie czegoś, a więc odpowiednie zinterpretowanie pewnych danych. Niezbędne jest coś jeszcze, a mianowicie dostatecznie dobre uzasadnienie.

W taki mniej więcej sposób relację między informacją a wiedzą przedstawiają SLAJDY, które proponuję uczynić tłem naszej rozmowy.

Oto jeden z nich, który ukazuje wspomnianą relację na tle szerszego schematu informacyjnej piramidy:

Informacja a wiedza

Zachęcam Państwa do samodzielnej refleksji na zarysowane tematy…
Dla pewnego jej ukierunkowania sformułuję kilka pomocniczych pytań:

1) Czy faktycznie jest tak, że najważniejszym „łącznikiem” między informacją a wiedzą jest czynność uzasadniania?

2) Czy sąd mający status wiedzy musi być prawdziwy (co to znaczy: prawdziwy?), czy wystarczy powołać się na jego dostatecznie dobre uzasadnienie?

3) Jakiego rodzaju uzasadnienia są najsilniejsze, a zatem jakiego rodzaju wiedza jest najbardziej wartościowa (matematyczna, logiczna, empiryczna…)?

4) W jakim zakresie proces nabywania wiedzy można zalgorytmizować i zautomatyzować?

Pytanie ostatnie odnosi do informatyki, która obecnie wkracza coraz silniej w sferę „machine learning”. Współczesne programy zdają się być czymś więcej niż implementacją algorytmów przekształcających dane wejściowe w wyniki. Są zdolne do samodzielnej interakcji z otoczeniem, w efekcie której doskonalą swój sposób działania i wytwarzają de facto nowe programy, które są czymś w rodzaju nowej wiedzy.  Zaskakującej niekiedy dla człowieka. Ale czy faktycznie możemy stwierdzić, że  te programy coś wiedzą…?

Jest to wprawdzie temat na osobną dyskusję, ale możemy tutaj o niego zahaczyć…

Serdecznie zapraszam do rozmowy – Paweł Stacewicz.

Zaszufladkowano do kategorii Dydaktyka logiki i filozofii, Filozofia informatyki, Filozofia nauki, Światopogląd informatyczny, Światopogląd racjonalistyczny | 33 komentarze