Z ogromną przyjemnością publikuję w naszym blogu tekst Wojciecha Głażewskiego (inżyniera i filozofa z Uniwersytetu w Białymstoku), szkicujący autorski scenariusz przejścia od aktualnie konstruowanych systemów sztucznej inteligencji do systemów superinteligentnych.
W scenariuszu tym na plan pierwszy wybijają się dwie oryginalne tezy.
Pierwsza mówi, że warunkiem koniecznym posiadania przez system prawdziwej inteligencji (a nie jej zaprogramowanej imitacji) jest zdolność systemu do samodoskonalenia się. Druga wskazuje na niezbędną podstawę samodoskonalenia, jaką są jakościowe zmiany struktury fizycznej systemu, wykraczające poza zmiany struktur danych czy programów sterujących pracą systemu.
Oczywiście tezy te nie wyczerpują spostrzeżeń, argumentów i propozycji Autora. Mam nadzieję też, że zachęcą Państwa do dyskusji, która je wesprze, osłabi, rozwinie lub postawi w innym świetle…
A oto otwierający dyskusję tekst Wojciecha Głażewskiego:
*********************
Refleksje nad scenariuszami dla sztucznej inteligencji
Mniej więcej rok temu odbyła się tutaj ciekawa dyskusja o cechach systemów AI, które miałyby świadczyć o ich inteligencji (https://marciszewski.eu/?p=11519). Pojawiło się wiele interesujących głosów, wśród których najczęściej wskazywano na umiejętność rozwiązywania problemów (zwłaszcza dzięki uczeniu się na podstawie własnych doświadczeń), zdolność do generalizacji oraz kreatywność (innowacyjność). Nie sposób wyliczyć ile już razy stawiano to pytanie. Na tym blogu nie wypada nie zacytować prof. Marciszewskiego:
Czy jest możliwe skonstruowanie inteligencji maszynowej, która by pod każdym względem dorównała ludzkiej inwencji? Jeśli nie, to pod jakim względem dorówna, a pod jakim przegra? A może da się skonstruować maszynę inteligentniejszą od człowieka? Jeśli tak, to pod jakim względem? (Marciszewski, 1998, s.117)
Rok to dużo czasu w epoce wykładniczego wzrostu. Okres zdobywania globalnego rynku nie jest już liczony w latach, ale w miesiącach. Scenariusz dla superinteligencji opisany przez Nicka Bostroma, wydaje się coraz bardziej realny (Bostrom, 2014). W tempie nomen omen potęgowym, sztuczna inteligencja osiągnie przewagę nad ludzkością, zostawiając nam bezsilność chyba najgorszego gatunku – intelektualną. Warto więc zapytać, co po tym roku osiągnęła technologia AI. Jaki scenariusz jej rozwoju właśnie się realizuje? Czy sztuczna inteligencja staje się bardziej inteligentna? Spróbuję wciągnąć Państwa do dyskusji stawiając przewrotną tezę: systemy AI, jakie nas obecnie otaczają, nie są inteligentne.
Kontynuując myśl prof. Marciszewskiego:
Żeby podjąć te zagadnienia, trzeba zdobyć pojęcie inteligencji na tyle operatywne, żeby móc zaproponować jakiś praktyczny test – sprawdzian, który pozwoli ocenić, jakie zachowania komputera świadczą o rodzaju i stopniu jego inteligencji. (Marciszewski, 1998, s.118)
W miejsce opisowych definicji inteligencji, które trudno zarówno umocować, jak i zanegować, z uwagi na ich ogólnikowy charakter, postawię warunek samodoskonalenia, czyli zdolności do ulepszenia samego siebie, jako cechy systemu inteligentnego, możliwej do stwierdzenia, na mocy tak postawionej jego definicji.
Pomimo wielu spojrzeń na inteligencję i wielu przykładów problemów zaliczanych do kategorii wymagających inteligencji, zadanie ulepszenia samego siebie wydaje mi się jednym z takich, które zawiera w sobie konieczność posiadania praktycznie wszystkich cech przypisywanych zwyczajowo działaniu inteligentnemu. Wymaga zdobycia wiedzy na temat własnego zachowania, czyli uczenia się z doświadczeń, wymaga też umiejętności generalizacji niezbędnej do wyciągnięcia wniosków z tych doświadczeń. Wymaga stawiania hipotez, a więc samodzielnego posługiwania się pojęciami. Wymaga podejmowania autonomicznych decyzji o tym, kiedy i w jaki sposób wpłynąć na własne zachowanie. Wreszcie wymaga kreatywności i innowacyjności w zaproponowaniu nowego, lepszego rozwiązania dla nowej wersji samego siebie. Matematyk Irvin John Good określił tę umiejętność jako “ultrainteligencję”. W 1966 roku opisał maszynę o takich możliwościach:
Let an ultraintelligent machine be defined as a machine that can far surpass all the intellectual activities of any man however clever. Since the design of machines is one of these intellectual activities, an ultraintelligent machine could design even better machines; there would then unquestionably be an „intelligence explosion,” and the intelligence of man would be left far behind. (Good, 1966, s.33)
Cała nowa maszyna potrzebna byłaby w przypadku odkrycia przez bieżącą maszynę fundamentalnie nowej zasady konstrukcyjnej. W przypadku wypracowania jedynie usprawnienia, proces samodoskonalenia mógłby mieć charakter inkrementalny – łańcucha poprawek. Współczesny badacz sztucznej inteligencji, Eliezer Yudkowsky, nazywa umiejętność ulepszenia własnych procesów “rekursywnym samodoskonaleniem”, a system, który miałby taką możliwość, “zalążkową SI”:
A seed AI is a strongly self-improving process, characterized by improvements to the content base that exert direct positive feedback on the intelligence of the underlying improving process. (Yudkowsky, 2007, s.96)
Cechą wyróżniającą maszyny ultrainteligentnej byłaby więc zdolność do zaprojektowania maszyny lepszej niż ona sama. Nie wydaje mi się, żeby ta właściwość pojawiła się dopiero na poziomie ultrainteligencji. Wszystkie elementy procesu realizowania tego zadania posiada przecież człowiek, a super- lub ultrainteligencja ma być systemem przewyższającym go możliwościami. Każdy więc system rzeczywiście inteligentny powinien tę zdolność mieć, a różnica w stopniu inteligencji będzie dotyczyła poziomu jego rozwoju, od zalążkowego, poprzez poziom zbliżony do ludzkiego, dalej superinteligentny, a poziom ultrainteligentny byłby już w pewien sposób granicznym, zapewne ze względu na limity fizycznej rzeczywistości. Warunek samodoskonalenia sztucznej inteligencji można więc sformułować jako zwiększenie możliwości inteligentnego działania w sztucznym systemie, zrealizowane wyłącznie własnymi procesami tego systemu.
W tym miejscu należy odróżnić zwiększenie fizycznych parametrów lub zasobów systemu, od rozwoju jakości realizowanych przez system procesów. Bostrom wyróżnia trzy formy superinteligencji: szybką, zbiorową i jakościową. Dwie pierwsze wydają się właśnie dotyczyć parametrów ilościowych systemów inteligentnych, natomiast ta trzecia dotyka istoty właściwego pojęcia inteligencji. Dla przykładu – zwiększenie liczby książek na półkach oraz przyspieszenie kroku przez pracowników biblioteki nie są zmianami w procesie obsługi czytelników, chociaż zwiększają możliwości biblioteki w jej roli udostępnienia jak największego zasobu literatury jak największej ilości osób. Zmiana organizacji katalogu książek lub zmiana heurystyki realizacji kwerendy, dla samego procesu funkcjonowania systemu biblioteki, byłaby już zmianą jakościową. Naturalnie nasuwa się tu zastrzeżenie, że jeśli system będzie posiadał więcej “wiedzy”, to jego możliwości będą większe. Pozostanę jednak przy ujęciu rozróżniającym zasoby i procesy, w którym kieszonkowy kalkulator dodający dwie kilkucyfrowe liczby realizuje proces o tej samej jakości, co komputer z wielordzeniowym procesorem, dodający dwie liczby kilkudziesięciocyfrowe. Interesująca nas różnica nie bierze się bowiem z porównania zasobów, ale z porównania procesów.
Aby uniknąć definiowania systemu inteligentnego opisowo (lista cech) lub tautologicznie (“system inteligentny to taki, który zachowuje się inteligentnie”), sformułuję warunek konieczny inteligencji, oparty na zdolności do samodoskonalenia strukturalnego:
System jest inteligentny wtedy, kiedy jest w stanie wypracować taką wersję swojej kolejnej struktury funkcjonalnej, która nie powtarza struktury wcześniejszej.
Przy czym, mówiąc o strukturze funkcjonalnej, mam na myśli fizyczną postać systemu, a więc rodzaj i układ jego elementów, co determinuje rodzaj ich wzajemnych zależności. Architektura wydaje się pojęciem zbyt wąskim, ponieważ te same architektury pamięci mogą być wypełnione innymi informacjami, dając systemowi inne możliwości. Program w pamięci komputera to także za mało, ponieważ możliwości systemu zależą od organizacji mikroprocesora. Sieć neuronowa wraz z wyuczonymi wagami wydaje się być najbliższa intuicji takiej struktury. Nie mam tutaj gotowych odpowiedzi, jest to jeden z tematów mojej pracy badawczej.
Wracając do samej definicji, to przy takim jej sformułowaniu mam nadzieję oprzeć ją na rzeczywistych danych możliwych do zebrania oraz na ustanowieniu zależności między nimi, możliwych do analitycznego wyznaczenia. Dla fizycznych parametrów lub zasobów systemu jest to oczywiste (np. różnica częstotliwości taktowania procesora, ilości danych w pamięci), jednak dla opisowych definicji inteligencji już takie nie jest. Jeśli jedną z cech systemu inteligentnego jest kreatywność, to jak porównać stopień kreatywności pomiędzy różnymi jego wytworami? Jak odróżnić nauczenie się na jednym doświadczeniu od nauczenia się na innym doświadczeniu? Powyższa definicja systemu inteligentnego rozwiązuje problem tych niejasności poprzez zamknięcie ich w zadaniu samodoskonalenia. Aby je poprawnie wykonać, należy zebrać doświadczenia, należy dokonać generalizacji, należy wypracować nowatorskie rozwiązanie. Zamiast porównywać “nowatorstwo” odpowiedzi systemu, ocenione zostaną konsekwencje działania zbudowanego na ich podstawie nowego systemu. Ponieważ znana jest struktura obecnego systemu oraz znane są struktury poprzednich wersji, można analitycznie wyznaczyć ich różnicę. Rozkład różnicy w czasie ujawni charakter postępu – czy był dodatni, czy ujemny, czy też zerowy.
Najprostszym przypadkiem byłby system, który nie jest w stanie wypracować kompletu informacji opisujących swoją własną strukturę, to znaczy system nie dający się zamknąć w pętlę samorozwoju. Do tej kategorii zaliczę wszystkie systemy wąskiej sztucznej inteligencji, powtarzając swoja tezę ze wstępu. Na naszych oczach eksploduje ich popularność, nie idzie za nią jednak zdolność do nowatorskiej kreatywności i do autonomicznego samorozwoju. Są narzędziami, programami komputerowymi o wielkich możliwościach. Kwestia samodoskonalenia do poziomu superinteligencji ich nie dotyczy.
Jeśli system potrafi wypracować komplet informacji, “przepis” na sztuczny system inteligentny, świadczy to o posiadaniu wiedzy ogólnej – z zakresu matematyki, informatyki, technologii maszyn, problematyki kognitywistycznej czy nawet filozoficznej. Na pewno o umiejętności wytworzenia obrazów (planów, schematów), tekstów (opisów technologii, instrukcji działania) oraz kodu (listingi programów). System taki będzie można zaliczyć do kategorii AGI i pewnie wkrótce możemy się spodziewać jego powstania. Czy jednak będzie inteligentny w tym jakościowym sensie, analogicznym do ludzkiego? Sądzę, że tylko postawienie mu zadania tak trudnego jak to, które postawił przed sobą człowiek – zaprojektowania sztucznej inteligencji – pozwoli uzyskać jednoznaczną odpowiedź. Będzie to jeden z najciekawszych eksperymentów w historii ludzkości.
Czemu nie zrobić takiego eksperymentu dla ChatGPT? Czy istnieje niebezpieczeństwo, że uzyskany wynik będzie dodatni? ChatGPT jest programem komputerowym uruchomionym na komputerze, co determinuje rezultat jego działania. W moim przekonaniu, system tego typu nie jest w stanie wypracować odpowiedzi o charakterze dodatnim informacyjnie, w stosunku do tego, co zawiera w strukturze swojego algorytmu. Dzieje się tak dlatego, że komputer realizuje wyłącznie operacje arytmetyczno-logiczne, a więc dedukcyjne w swojej naturze. Odpowiedzi systemu zawierają się już w przesłankach, od których wychodzi. Obliczony dla takich operacji zysk informacyjny ze wzoru Shannona da wartość zero. Mówiąc jeszcze inaczej, systemy komputerowe same z siebie nie mogą się dowiedzieć więcej niż już wiedzą. Wynika to stąd, że procesory komputerów realizują wyłącznie procesy fizyczne, a więc działają zgodnie z kierunkiem entropii. Zwiększenie złożoności informacyjnej jest działaniem przeciw entropii, więc możliwość taką może mieć tylko system, który potrafi zmienić swoją strukturę fizyczną. Takiej możliwości krzemowy mikroprocesor nie posiada.
Aby eksperyment dał rezultat dodatni, nowy system, zbudowany na podstawie kompletu dokumentacji wypracowanego przez poprzedni system, musi różnić się w swoim działaniu od systemu poprzedniego. Musi różnić się swoją strukturą fizyczną, ponieważ tylko taka różnica umożliwi inny przebieg zachodzących w nim procesów. Nie tylko musi się różnić, ale ta różnica musi wprowadzać do struktury nową jakość. Określa to druga część definicji – jeśli struktura powtarza wcześniejszą, to system albo się ustabilizował i grozi mu nieskończone zapętlenie na określonym poziomie, albo degraduje się i dotarł do którejś z wcześniejszych, mniej inteligentnych struktur. Charakter tego nowego pierwiastka, czy był korzystny czy nie, można oczywiście sprawdzać mierząc odpowiedzi nowego systemu na zestaw problemów testowych czy porównując ilości punktów zdobytych w zadaniach kontrolnych, byłyby to jednak testy wąskie, ograniczone, trudne często do porównań i niejednoznaczne. Szukając odpowiedzi na najważniejsze, postawione na wstępie pytanie, czyli jaki scenariusz rozwoju sztucznej inteligencji się realizuje, można spróbować obserwować trend różnic kolejnych struktur. Dodatni rezultat potwierdzi obecność jakościowej inteligencji, porównywalnej z ludzką. Jeśli wtedy zdecydujemy o alokacji zasobów oraz umożliwimy systemowi realizację kolejnych wcieleń, otworzymy mu drogę do superinteligencji.
Eksperyment już się zaczął. AI jest używana do doskonalenia technologii AI. Czy jednak wytworzy nową, lepszą wersję samej siebie? Tak się w tej chwili nie dzieje. Owszem, programy komputerowe zwane sztuczną inteligencją są wykorzystywane w optymalizacji technik sztucznej inteligencji, ale nadal jako narzędzia dla zajmujących się tym programistów. Są niezwykle użyteczne, ale wciąż wymagają kuratora. To człowiek jest źródłem inteligencji dla tych sztucznych systemów. Źródłem inteligentnego ich zaprojektowania, inteligentnego promptu, czy wprost źródłem danych, które przecież pochodzą z jego inteligentnej działalności. Przywołując jeszcze raz prof. Marciszewskiego, w kwestii systemów inteligentniejszych od człowieka:
Czy wystarczy jako środek dostatecznie złożony software, bez rewolucji w rozwiązaniach sprzętowych? Czy też konieczne będzie wytworzenie jakiegoś nowego rodzaju urządzeń, może biologicznych? (Marciszewski, 1998, s.117)
Jeśli system będzie oparty na krzemowym mikroprocesorze, to jak miałby zmienić swoją fizyczną postać? Aby zrealizować zadanie samodoskonalenia, system sztucznej inteligencji musiałby prawdopodobnie być oparty na innym rodzaju substratu informacyjnego, ale to już temat na inną opowieść.
Literatura
- Bostrom, N. (2014). Superintelligence: Paths, dangers, strategies. Oxford University Press.
- Good, I.J. (1966). Speculations Concerning the First Ultraintelligent Machine. Comput., 6, 31-88.
- Marciszewski, W. (1998). Sztuczna Inteligencja. Społeczny Instytut Wydawniczy Znak
- Yudkowsky, E. (2007). Levels of Organization in General Intelligence. In: Goertzel, B., Pennachin, C. (eds) Artificial General Intelligence. Cognitive Technologies. Springer, Berlin, Heidelberg.
WOJCIECH GŁAŻEWSKI
*************************
Najserdeczniej zapraszam do dyskusji nad powyższym tekstem — Paweł Stacewicz.