Czy maszyny mogą stać się prawdziwie inteligentne?

O tym, że sztuczna inteligencja istnieje – z naciskiem na odnoszące do informatyki słowo „sztuczna” – nie trzeba nikogo przekonywać.
Istnieje ona pod postacią zaawansowanych programów komputerowych, które potrafią rozpoznawać złożone obiekty (np. ludzkie twarze), prowadzić niezawodne wnioskowania (np. matematyczne) i uczyć się w interakcji z otoczeniem (co czynią np. sztuczne sieci neuronowe)…

W tytule obecnego wpisu widnieje jednak termin „prawdziwa inteligencja”, który należałoby odnieść do najbardziej wyrafinowanej formy inteligencji, jaką znamy z natury, a więc inteligencji ludzkiej.
Czy maszyny mogą zatem dorównać ludziom – o których wiemy, że nie tylko potrafią coś automatycznie rozpoznać czy mechanicznie wywnioskować, ale niemal zawsze, z natury rzeczy, czynią to ze zrozumieniem. Mało tego, nie na tym tylko polega ich siła, że rozwiązują problemy, lecz na tym, że je dostrzegają i stawiają.

Podobną dyskusję prowadziliśmy już wcześniej, pod nagłówkiem Turing czy Searle?, odwołując się zatem do poglądów dwóch pionierów debaty nad hipotetycznym myśleniem maszyn.

Obecna dyskusja może iść zarówno tym dawnym tropem, jak też poruszać nowe wątki.
Podobnie jak poprzednio jej podstawą proponuję uczynić arcyciekawy tekst Turinga, w którym znajdziemy ideę testu na inteligencję maszyn (tzw. testu Turinga), popularny opis pierwszych maszyn cyfrowych oraz różne argumenty na rzecz możności zaistnienia maszyn inteligentnych (szerzej: myślących).
Właśnie do tych argumentów, zawartych w szóstym rozdziale artykułu, proponuję tutaj nawiązywać.

Podaję link do wspomnianego tekstu:
♦   Alan Turing: „Maszyny liczące a inteligencja”.

I otwieram nową dyskusję, licząc na ciekawe i wchodzące w żywą interakcję głosy…

Zaszufladkowano do kategorii Dydaktyka logiki i filozofii, Filozofia nauki, Światopogląd informatyczny, Światopogląd racjonalistyczny | 41 komentarzy

Która z nauk wpływa najsilniej na współczesny światopogląd?

Obecny wpis został zainspirowany bardzo ciekawą dyskusją, którą odbyliśmy kilka tygodni temu na Politechnice Warszawskiej w ramach przedmiotu „Nauka a światopogląd”.
Jako że nasz blog – zgodnie z hasłem widocznym pod jego tytułem, proszę zerknąć wyżej :) – ma służyć „promocji” światopoglądu informatycznego, liczyłem na to, że niektórzy przynajmniej dyskutanci, wskażą informatykę jako naukę ważną światopoglądowo.

Nic takiego jednak się nie stało :).
Studenci wymieniali raczej nauki (dyscypliny) humanistyczne, z rzadka tylko odnosząc się do nauk przyrodniczych czy ścisłych.

Oto jeden z silnie reprezentatywnych głosów:

Moim zdaniem nauki prawne najsilniej wpływają na światopogląd współczesnego człowieka. Prawo reguluje wszystkie dziedziny życia jednostki, zasady życia społecznego, politycznego, a także gospodarczego, co powoduje, iż społeczeństwo tworzy własny system wartości, norm i opinii, który składa się na pojęcie światopoglądu człowieka. Chciałabym podkreślić, że ma to znaczenie uniwersalne, czyli dotyczy to wszystkich zbiorowości świata, pomimo że systemy norm prawnych poszczególnych państw znacznie różnią się między sobą, to zawsze zachodzi zjawisko wpływu wskazanej dziedziny na światopogląd współczesnego człowieka. Liczne prawa, wolności, obowiązki, zakazy oddziałują na przekonania jednostki, gdyż określają jakie zachowanie jest dobre bądź złe.

Inne osoby punktowały historię, ekologię, medycynę, biologię…
Niektórzy odżegnywali się od nauk, wskazując religię.

Nie tracąc nadziei, że ktoś doceni światopoglądową rolę informatyki, a razem z nią algorytmów, komputerów, technologii cyfrowych, rzeczywistości wirtualnej, badań nad sztuczną inteligencją…. otwieram dyskusję.

A zatem:

Która z nauk, Państwa zdaniem, wpływa najsilniej na światopogląd współczesnego człowieka?

Być może rozpocznie ktoś ze studentek/ów…

Zaszufladkowano do kategorii Dydaktyka logiki i filozofii, Filozofia nauki, Światopogląd informatyczny, Światopogląd racjonalistyczny | 10 komentarzy

Informacja w ujęciu obliczeniowym. Dyskusja wokół tekstu Giuseppe Primiero.

Chciałbym wywołać luźną dyskusję nad tekstem Giuseppe Primiero, który w ramach swojej wizyty badawczej na PW (listopad 2019) omawiał między innymi zagadnienie wskazane w tytule obecnego wpisu.

Podstawą dyskusji chciałbym uczynić: a) artykuł naukowy prof. Primiero, oraz b) slajdy do jego wykładu, wygłoszonego na wydziale WEiTI PW.
Być może przydatne okażą się także moje slajdy, w których prezentuję podobne zagadnienia, choć z nieco innej perspektywy.

Dobrym streszczeniem koncepcji omawianej w źródłach a i b (czyli podstawowych) jest następujący obrazek:

Obrazek informacyjnej piramidy

Widzimy na nim 5 warstw abstrakcji (ang. layers of abstractions), które dotyczą informacji w ujęciu obliczeniowym. Na warstwie najniższej (u góry rysunku) informację utożsamia się z układem fizycznych (elektrycznych) stanów maszyny, które są kontrolowane za pomocą struktur określonych na wyższych warstwach. Na warstwie najwyższej (u dołu) informację rozumie się jako – właściwie jest to kwestia do dyskusji – konfigurację mentalnych stanów projektanta systemu obliczeniowego, który to projektant „ma w swojej głowie” reprezentację pewnego problemu do rozwiązania, żywi intencję jego rozwiązania oraz, co najważniejsze, zna ogólny sposób rozwiązania. Ów sposób jest rozpisywany/implementowany na kolejnych warstwach… jako algorytm, program, a następnie maszynowy kod.
W moim odczuciu, w obrębie wszystkich warstw, informacja jest rozumiana jako relacja pomiędzy wejściem i wyjściem, czy też między danymi wejściowymi i danymi wyjściowymi – choć w tekście Giuseppe Primiero nie znajdziemy wprost takiego określenia. Z tego względu informacja jest tutaj czymś dynamicznym, algorytmicznym, obliczeniowym… jest wprawdzie pewną strukturą, ujmowaną na różnych poziomach w różny sposób, ale strukturą relacyjną, warunkującą działanie (action, operation, problem solving itp).

W powyższym skrótowym opisie, podzieliłem się z Państwem własną interpretacją koncepcji prof. Primiero, którą to interpretację poddaję, rzecz jasna, pod dyskusję.
Poddaję pod dyskusję również kilka innych zagadnień, które nasunęły mi się podczas lektury zalinkowanych wyżej źródeł.
Oto one:

1) Która z warstw wskazanych na rysunku wydaje się Państwu, z punktu widzenia informatyki, najważniejsza?

2) Czy wszystkie warstwy są równie istotne dla ujęcia istoty informacji/danych? Na przykład: czy trzech warstw wewnętrznych (kod maszynowy, program, algorytm) nie należałoby „zwinąć” do postaci jednej, algorytmiczno-programistycznej, warstwy?

3) Czy przedstawione ujęcie nie zamazuje różnicy między danymi (również strukturami danych) i algorytmami? Czy ujęcie to, poprzez utożsamienie informacji z czymś algorytmicznym (relacyjnym, regułowym, dynamicznym), nie postuluje jednak, że najważniejszym pojęciem informatyki jest algorytm, a nie informacja?

4) Czy do przedstawionego zestawu warstw nie należy czegoś dodać, np. warstwy modelu obliczeń, na której moglibyśmy rozróżnić (w ujęciu matematycznym) różne elementarne sposoby kodowania/zapisywania danych (np. w przypadku układów analogowych mamy kod ciągły, a w przypadku cyfrowych – dyskretny)?

Oczywiście, jak zwykle, można stawiać inne jeszcze pytania i próbować na nie odpowiadać.
Najlepiej w interakcji z innymi, :).

Z niecierpliwością czekam na pierwsze głosy – Paweł Stacewicz.

Zaszufladkowano do kategorii Dydaktyka logiki i filozofii, Filozofia informatyki, Filozofia nauki, Światopogląd informatyczny | 25 komentarzy

Techniki obliczeniowe przyszłości…

Obecny wpis stanowi kolejną odsłonę tematu, które dyskutowaliśmy w blogu już kilkukrotnie. Ostatnią dyskusję — potraktujmy ją jako zakończoną i nowe komentarze dodawajmy już tutaj — można przeczytać w tym miejscu.

Tegoroczny wpis kieruję przede wszystkim – choć nie tylko! – do uczestników moich zajęć na Wydziale Elektroniki i Technik Informacyjnych PW, pt. „Filozofia informacji i techniki”; zwłaszcza tych uczestników, którzy zapisali się do dyskusji online, i zobowiązali się przedstawić swoje wstępne argumenty w postaci osobnych komentarzy do tego wpisu…

Czekając na pierwsze głosy, przedstawiam niżej – dla rozgrzewki i zachęty zarazem – krótką składankę argumentów, których używali studenci w latach ubiegłych.

Oto ona:

1. Pierwszą kwestią na jaką warto zwrócić uwagę jest fakt, że dzisiaj przy budowie tranzystorów, które stanowią konieczny element współczesnych komputerów cyfrowych, używa się krzemu. Naukowcy przewidują że do 2023 roku możliwości tego pierwiastka wyczerpią się i nie będziemy w stanie bardziej zmniejszyć układów, ponieważ będą nas ograniczały rozmiary elektronów.
W tym kontekście warto zauważyć, że często lepsze osiągi otrzymujemy nie dzięki rozwojowi hardware’u, lecz dzięki optymalizacji software’u. Dlatego, nawet kiedy wykorzystamy już całkowicie możliwości krzemu, mimo wszystko wciąż będziemy mogli z niego „wyciągnąć” więcej. Również za sprawą technik sztucznej inteligencji.

2. Jedną z najbardziej obiecujących technologii przyszłości, rozwijaną już dzisiaj, są komputery kwantowe. Pozwalają one na tysiące razy wydajniejsze przetwarzanie danych, ponieważ stosowane w nich q-bity (kwantowy odpowiednik bitów) mogą być jednocześnie w obu stanach (a w standardowych komputerach przyjmują tylko jeden stan).
Istnieje już IBM Q Experience – platforma online dająca każdemu dostęp do zestawu prototypów komputerów kwantowych IBM przez chmurę. Może być wykorzystywana do testowania algorytmów „kwantowych” czy innych eksperymentów.

3. Kolejne kilka technologii, o których wspomnę jest wymieniana jako jedne z możliwych technologii, które zastąpią komputery cyfrowe, jednak póki co są dalekie do jakiejkolwiek realizacji.
Pierwszą z nich są komputery oparte nie o przepływ elektronów, ale o przepływ światła. Jak wiemy światło osiąga największą prędkość we wszechświecie, czyli dałoby to możliwości zbudowania komputera o maksymalnej możliwej szybkości przesyłania sygnałów. Problemem jaki napotykamy jest to, że fotony nie mają masy i związane z tym problemy zbudowania czegoś podobnego do tranzystora w oparciu o światło.
Drugą ciekawą koncepcją jest zbudowanie komputera opartego o DNA. DNA posiada każdy organizm żywy, więc jeśli chodzi o zasoby to są one ogromne zwłaszcza, że może się ono odnawiać. Z pewnych opracowań naukowych wiadomo także, że za pomocą odpowiedniej manipulacji łańcuchami DNA udaje się rozwiązywać bardzo złożone problemy kombinatoryczne.
Kolejną ideą, która stanowi rozwinięcie powyższej, jest komputer biologiczny, którego i podstawowe elementy przetwarzające byłyby wzięte wprost z natury (np. byłyby to realne komórki nerwowe jakiegoś organizmu, np. szczura). Architektura takiego układu byłaby również wzorowana na naturze, np. przypominałaby architekturę mózgu.

Powyższe argumenty są oczywiście tylko „sygnałem wywoławczym”.
Czekam na głosy tegoroczne, równie ciekawe (i rozbudowane) jak powyższy miks.
Zachęcam też, aby komentarze odnosiły się do siebie wzajem, tworząc żywą dyskusję.

Zapraszam do dyskusji WSZYSTKICH czytelników bloga — Paweł Stacewicz

Zaszufladkowano do kategorii Dydaktyka logiki i filozofii, Filozofia informatyki, Filozofia nauki, Światopogląd informatyczny | 10 komentarzy

On analogy between the role of conceptualization in computational and in empirical hypothesizing

In the Abstract of Prof. Primiero’s lecture „Computational Hypotheses and Computational experiments” (at Warsaw University of Technology, November 19, 2019) I found the following, much thought-provoking claim; let it be called PC (Primiero’s Claim).

PC: The analogy between the scientific method and the problem-solving process underlying computing still is a tempting proposition.

This is a strong temptation, indeed. I am one who did succumb to it. This is due to my vivid interest in Turing’s [1939] idea of oracle as discussed in my paper „The progress of science from a computational point of view: the drive towards ever higher solvability” — in the journal Foundations of Computing and Decision Sciences, 2019 (Vol.44, No.1) — Section 4 dealing with Turing’s [1939] idea of oracle.

What is there said seems to provide some premises to discuss the analogy claimed by PC. To wit, that similar rules control the problem solving-processes (hence a progress of science) in empirical sciences and those called by Prof.Primiero computational sciences. It seems to me (a point for discussion) that the latter term can be conceived as equivalent with what is called „decision sciences” (see the quoted journal’s title), i.e., theories of decidability (to be called computability as well).

A crucial Turing’s (1939) claim concerning decidability in mathematics (see quotations by Marciszewski 2019), which continues his revolutionary result of 1936/37 (on the existence of uncountable numbers), is the following. When there is a problem undecidable at a given evolutionary stage of axiomatized and formalized theory, it can prove solvable with inventing
appropriate new axioms. Those, in turn are due to a creative concept-forming  to be involved into the axioms, and so expressed by primitive terms of the theory in question.

Such an adding of axioms and the concepts involved — to be briefly called conceptualization — somehow motivated by mathematical intuition, do not enjoy a merit of infallibility. This have to be checked as guesses which may fail, as is happens with some presages; hence their metaphorical name „oracles” as suggested by Turing. In this respect they resemble  empirical hypotheses being in need of testing. While in empirical teories hypotheses are tested with experiments, in computational science they are tested with their efficiency to produce right algorithms, and those, in turn — with their ability to be transformed into effective programs.

Thus the axioms of Boolean algebra produce, e.g., various algorithms to solve the problems of validity of propositional formulas, while those in turn, can be used to construct programs for automated theorem proving (the so-called provers).

Very interesting examples of testing such guesess can be found in the evolution of arithmetic. This, however, is a new subject, to be discussed in a next post. And still in another post one should consider thought-provoking analogies in problem-solving between mathematics and empirical sciences, e.g., astronomy.

Zaszufladkowano do kategorii Filozofia informatyki, Filozofia nauki | Otagowano , , | 4 komentarze

Dane, informacja, wiedza…

Niniejszy wpis jest pomyślany jako krótkie zagajenie dyskusji o związkach miedzy trzema pojęciami: danymi, informacją i wiedzą. Temat ten podejmowaliśmy już wcześniej, np. w ramach wpisu Informacyjna piramida, tutaj jednak wznowimy go — głównie z myślą o studentach wydziału WEiTI PW  (z którymi będziemy kontynuować dyskusję na żywo, podczas zajęć filozoficznych).

Zanim przejdziemy do dyskusji warto wyjaśnić, że w odpowiednio szerokim kontekście termin „informacja” rozumie się bardzo szeroko. Nawet tak szeroko, że zarówno dane, jak i wiedzę, utożsamia się z pewnymi postaciami informacji. Dla przykładu: informacje zawarte w podręcznikach akademickich to jakaś wiedza, a informacje przechowywane w pamięci komputerów to jakieś dane.

Tutaj jednak z tak szerokiego sposobu rozumienia informacji zrezygnujemy. Będziemy próbowali tak wyostrzyć nasz język, aby mimo wszystko rozróżnić informację i wiedzę, oraz informację i dane. W konsekwencji zaś będziemy chcieli nakreślić pewien obraz związków miedzy trzema wymienionymi pojęciami.
Informację tak zinterpretowaną umieścimy dodatkowo w kontekście czynności poznawczych ludzkiego umysłu. Będziemy zatem rozumieć ją jako coś, co gromadzą, przetwarzają i wykorzystują indywidualne umysły. (Co nie znaczy, że w dyskusji nie będziemy mogli wyjsć poza kontekst psychologiczny, np. w stronę komputerów!)

Intencje powyższe dobrze oddaje fragment szerszego TEKSTU, który proponuję uznać (i fragment, i cały tekst) za punt wyjścia dalszej dyskusji.

Oto ten fragment:

Z przyjętym tutaj rozumieniem przetwarzanych przez umysł informacji łączy się pewien metaforyczny obraz, który potraktuję dalej jako punkt wyjścia do omówienia związków między sferą informacji/wiedzy a sferą wartości. Obraz ten będę określał mianem informacyjnej piramidy.

Obrazek informacyjnej piramidy

Informacyjna piramida składa się z trzech poziomów, których układ odpowiada następującej obserwacji: przetwarzane przez umysł informacje są, z jednej strony, w określony sposób kodowane, a z drugiej strony, mogą stać się podstawą lub elementem podmiotowej wiedzy.

Zgodnie z tą obserwacją na najniższym poziomie piramidy sytuują się dane, czyli pewne niezinterpretowane łańcuchy symboli określonego kodu; nad nimi górują informacje, czyli dane zinterpretowane, wplecione jakoś w ludzką świadomość i mające określony sens; na informacjach z kolei nabudowuje się poziom wiedzy – czyli ogółu informacji zweryfikowanych przez podmiot, a więc dostatecznie dobrze dlań uzasadnionych.

Piramida obejmuje zatem trzy poziomy – I. dane, II. informację i III. wiedzę – które wspierają się na twardym gruncie faktów, a więc tego, co dzieje się w otaczającym naszą konstrukcję świecie. Wejście na poziom I. zapewnia zdolność rozpoznawania czysto fizycznych regularności w świecie (które są odzwierciedlane w danych);  do przejścia z poziomu I. na poziom II. jest niezbędna czynność interpretowania (danych); zaś z poziomu II. na III. – czynność weryfikacji czy też uzasadniania prawdziwości pozyskiwanych informacji.

Zauważyć trzeba, że granice między poszczególnymi segmentami piramidy pozostają rozmyte – choć dla potrzeb naszego wywodu warto je wyostrzyć. Na przykład: informacje pretendujące do roli wiedzy mogą być w różnym stopniu weryfikowane (wiele z nich sytuuje się zatem gdzieś pomiędzy czystą informacją a czystą wiedza), zaś o każdej danej powiedzieć można, że niesie ze sobą pewną informację (choćby taką, która wskazuje sposób jej automatycznego przetworzenia).

Przechodząc zatem do dyskusji….

Jak rozumiecie Państwo relacje w trójkącie <dane, informacja, wiedza>?
Co jest tu najważniejsze?
Co sprawia, że dane mogą przeobrazić się w informację, a ta ostatnia w wiedzę?
A może nasze trójczłonowe rozróżnienie trzeba jeszcze bardziej wysubtelnić i wprowadzić dodatkowe poziomy piramidy?
(…)

Serdecznie zapraszam do dyskusji – Paweł Stacewicz.

Zaszufladkowano do kategorii Bez kategorii, Filozofia informatyki, Filozofia nauki, Światopogląd informatyczny | 13 komentarzy

Sztuczna Inteligencja. Czy mamy się czego bać?

Temat sztucznej inteligencji gościł na naszym blogu nie raz. Obecny głos możemy potraktować jako kontynuację dyskusji, którą zainicjował historyczny już wpis jednej ze studentek wydziału Fizyki PW. Polecam go jako lekturę wstępną

W niniejszej dyskusji proponuję skupić się na zagrożeniach ze strony SI: egzystencjalnych, społecznych, gospodarczych… (lista nie jest z pewnością zamknięta).

Na dobry początek przedstawiam próbkę spostrzeżeń i argumentów, które nadesłali w ubiegłym semestrze studenci wydziału WEiTI PW.

Oto ona:

1.  Sztuczna inteligencja (SI) rozwija się tak szybko, że według wybitnych badaczy, takich jak Stephen Hawking, już niedługo przewyższy człowieka. Jako następstwo ludzkość może przestać kontrolować poczynania sztucznej inteligencji i zostać zepchnięta na drugi plan (a nawet zniewolona czy fizycznie wyeliminowana).

2.  Bardzo poważnym zagrożeniem jest fakt, że SI może nie być w stanie określać takich samych środków do celu jak ludzie. Pomyślmy, na przykład, o autonomicznej broni, która nie zważając na straty  będzie dążyć do zniszczenia przeciwnika. Może np. ranić wielu niewinnych cywilów czy spowodować nieodwracalne zmiany w naturalnym środowisku.

3.  Dzięki niesamowitej produktywności i precyzji, przy relatywnie niskich kosztach „pracy”, sztuczna inteligencja już zastępuje ludzi w wielu zawodach, a w przyszłości może zastępować nas w większości prac. Grozi to globalnym bezrobociem.

4.  Także autonomiczne algorytmy, które już teraz zbierają o nas dane i wykorzystują je w celach marketingowych, mogą zostać rozwinięte do poziomu, w którym np. polityczna propaganda może być „zaszczepiana” w ogromnej części społeczeństwa i to ze znakomitym skutkiem. Również systemy kamer rozpoznające obywateli i przyznające im tzw. „noty społeczne” są jawną ingerencją w prywatność i wolność człowieka jako jednostki.

Zachęcam do uzupełnienia i rozwinięcia tych głosów…

Podejrzewam także, że są wśród nas osoby, które mają w stosunku do SI zdanie odmienne. To znaczy: widzą w SI nie jakieś mroczne zagrożenie, lecz cywilizacyjną szansę (potężną technologię, która może nam się dobrze przysłużyć).

Czekam zatem na głosy obydwu stron…

Zapraszam do dyskusji wszystkich Czytelników bloga — Paweł Stacewicz.

Zaszufladkowano do kategorii Dydaktyka logiki i filozofii, Filozofia informatyki, Filozofia nauki, Światopogląd informatyczny, Światopogląd racjonalistyczny | 33 komentarze

W jaki sposób logika predykatów może być pomocna w badaniu języka naturalnego?

Przeczytałem z ciekawością streszczenie odczytu prof. Andrzeja Włodarczyka na seminarium 30 maja 2019. Z ciekawością, bo interesuje mnie żywo zjawisko interdyscyplinarności, a tekst tego odczytu pozwala dostrzec fakt, że interdyscyplinarność czy transdyscyplinarność (czy jest tu jakaś różnica?) nie jedno ma imię. Różne mogą być jej typy, a tekst prof. Włodarczyka reprezentuje wyraziście pewien określony typ. Nazwałbym go nowatorskim, podczas gdy moje amatorskie wycieczki w interdyscyplinarność mają charakter raczej konserwatywny.

Cechą postawy nowatorskiej jest m.in. pomysłowość w kreowaniu nowych terminów, bez których rozumienia nie jest możliwe, żeby słuchacz lub czytelnik mógł coś wnieść w rozwiązywanie postawionego przez Autora problemu. Co do mnie, mam trudność ze zrozumieniem już pierwszych zdań, gdzie występują terminy: aktywowane moduły, w rozproszeniu, enkapsulacja, architektura kanału komunikacyjnego, budowa lejowata.

Sądzę, że w pełnym tekście wszystko to się wyjaśni, ale nie jestem pewien, czy gdybym nawet terminy te zrozumiał, przyda mi się to w moich własnych rozmyślaniach o języku. Konserwatywnym punktem wyjścia w rozumieniu struktur językowych jest dla mnie rachunek predykatów pierwszego rzędu, a w/w terminy nie mają z nim związku.

Istnieją kolosalne i dobrze przećwiczone możliwości rozbudowy tego rachunku. Wśród nich są takie, które obiecująco go przybliżają do języka naturalnego, nad czym pracował np. Andrzej Grzegorczyk. Jeśli miałbym do Profesora jakieś pytanie dyskusyjne to właśnie to: jak ma się jego program do programu Grzegorczyka?

Zaszufladkowano do kategorii Filozofia nauki, Logika i metodologia | Otagowano , , | 6 komentarzy

Czy AlanTuring miał rację… gdy pisał o myśleniu maszyn i ludzi?

Czy Alan Turing miał rację, gdy:

a) utożsamił kryterium myślenia maszyn z nieodróżnialnością wypowiedzi językowych maszyn i ludzi,

b) utrzymywał i przekonywał, że nie jest dobrze uzasadniony pogląd jakoby „maszyny (cyfrowe) nie mogły myśleć„?

Pytania te – odnoszące do historycznego artykułu Alana Turinga pt. Maszyny liczące a inteligencja –  kieruję przede wszystkim, choć nie tylko!, do uczestników moich zajęć na wydziale WEiTI PW.

Gdyby ktoś zechciał ustosunkować się do pytania drugiego, proponuję, aby nie trzymał się kurczowo zaproponowanego przez Turinga kryterium myślenia (maszyn), lecz wziął pod uwagę także intuicyjne pojęcie myślenia – ukształtowane np. w drodze introspekcji (tj. wewnętrznej obserwacji własnych przeżyć psychicznych) czy też analizy warunków, które musi spełniać podmiot myślący (refleksyjny, rozumiejący, interpretujący, samoświadomy…).
Jest to uzasadnione, ponieważ sam Turing nie był tutaj konsekwentny. Pisząc o myśleniu maszyn, niekiedy powoływał się na swój behawioralny test (nazywany dziś testem Turinga), w innych fragmentach jednak uwypuklał pojęcia filozoficzne, tak jak dusza (niematerialna podstawa myśli) czy świadomość (dany w introspekcji, konieczny składnik myślenia).
Proponuję więc, abyśmy i my tutaj, w ramach zbliżającej się dyskusji, nie odrzucili całkowicie tego tego drugiego punktu widzenia.

Czekam zatem na kolejne głosy — które mogą oczywiście odnosić się do siebie wzajem, tworząc żywą dyskusję.

Pozdrawiam i zapraszam do debaty –- Paweł Stacewicz.

Zaszufladkowano do kategorii Dydaktyka logiki i filozofii, Epistemologia i ontologia, Filozofia informatyki, Filozofia nauki, Światopogląd informatyczny, Światopogląd racjonalistyczny | 17 komentarzy

„Informatics” or „Computer Science”?

As for rendering the Polish phrase „Filozofia w Informatyce” in English,  I think that the translation „Philosophy of Informatics” is obvious (if it is expected to cover the real field of interests at our conferences). Perhaps, the issue is worth of some discussion, but without putting  too much effort; a concise exchange of opinions  within this blog should do.

To contribute to such an exchange, I suggest consulting the article:  https://en.wikipedia.org/wiki/Informatics#Etymology. There you find the explanation: „the field of informatics has great breadth and encompasses many subspecialties, including disciplines of computer science, information systems, information technology and statistics.”.

Now everybody, I believe, has to see that the translation „computer science” proves too narrow (restrictive). To the list of disciplines embraced by the term „informatics” there should be added relevant parts of mathematical logic, like the issues of computability (e.g., relative computability as depending from the power of axioms, inference rules etc.). Moreover, neoroinformatics (nearly 600.000 items in Google), some issues of genetics, of cognitive science, and so on.

Let me add the following definition from a German source, as the term „Informatik” has been coined by German scholars.

„Informatik — Wissenschaft von der systematischen Verarbeitung von Informationen, insbesondere mithilfe von Computern.”

This is to the effect that „Informatik” means: „science of systematic processing of messages, in particular [emphasis mine] with the help of computers.” Note, computers are here treated as distinguished but not the only means of information processing.

Zaszufladkowano do kategorii Filozofia informatyki, Filozofia nauki | Otagowano , , , | Jeden komentarz