W dniach 22-24 września br. odbędzie się w Białymstoku XI Zjazd Polskiego Towarzystwa Kognitywistycznego, w ramach którego wygłoszę referat pt. „Czy turingowskie modele umysłu są jeszcze interesujące?”. Już sam tytuł podpowiada, że będzie to temat mocno powiązany z dyskusjami, które wiedliśmy na tym blogu, chociażby z dyskusją nt. „Co to znaczy, że umysł jest maszyną Turinga?”.
Ponieważ do Zjazdu pozostało kilka dni, a ja wciąż pracuję nad tekstem i slajdami, chciałbym poddać pod rozwagę blogowiczów kilka punktów przygotowanego wcześniej streszczenia.
Być może skłonią one kogoś do wstępnej refleksji, która mnie z kolei zainspiruje.
Będę wdzięczny za każde pytanie, dopowiedzenie, uwagę etc…
Dyskusję będziemy mogli kontynuować także po wygłoszeniu przeze mnie referatu.
A oto wspomniany tekst streszczenia.
Czy turingowskie modele umysłu są jeszcze interesujące?
1. Mianem turingowskiego modelu umysłu (TMU) określam każdy model informatyczny, polegający na przyrównaniu umysłu (a dokładniej: pewnego zbioru struktur i czynności umysłowych) do pewnego systemu informatycznego, który na odpowiednio niskim poziomie opisu jest równoważny pewnej maszynie Turinga.
2. Chociaż koncepcje konkretnych i uniwersalnych maszyn Turinga powstały w 1-ej połowie XX wieku, to po dziś dzień wyznaczają one teoretyczne standardy obliczeń cyfrowych (realizowanych przez zdecydowaną większość współczesnych komputerów). Ich stosunkowo proste założenia pozwalają także określić nieprzekraczalne granice technik cyfrowych (związane z problemami cyfrowo nieobliczalnymi, jak np. problem równań diofantycznych).
3. Z punktu widzenia kognitywistyki modele TMU wydają się interesujące z dwóch przeciwstawnych powodów.
Po pierwsze, za ich pomocą, to znaczy nie negując żadnej z cech konstytutywnych obliczeń turingowskich, daje się opisywać umysł na różnych poziomach i pod różnymi, wciąż nowymi, względami. Z faktem tym współgra niezwykle bogactwo programów komputerowych (niekiedy modelujących umysł), które są turingowskie w tym sensie, iż daje się je przełożyć na programy uniwersalnej maszyny Turinga.
Po drugie jednak, modele TMU stanowią dobrze określony teoretyczny punkt wyjścia do formułowania modeli alternatywnych, osadzonych w teorii tzw. hiperobliczeń (tj. obliczeń, które z teoretycznego punktu widzenia pozwalają rozwiązywać niektóre problemy nieobliczalne dla maszyn Turinga).
4. Modele alternatywne względem TMU uzyskuje się poprzez takie poszerzanie modelu turingowskiego, które polega na modyfikowaniu co najmniej jednej z jego kluczowych cech: a) dyskretności (cyfrowości), b) skończoności (skończona liczba operacji wykonywanych w skończonym czasie), oraz b) determinizmu (ściśle określony schemat przetwarzania danych).
Modyfikacja jednej z w/w cech prowadzi odpowiednio do modelu: a’) analogowego, b’) infinitystycznego, c’) niedeterministycznego (modyfikacja większej liczby cech do modeli mieszanych).
5. Z uwagi na uzasadnione wątpliwości co do praktycznej realizowalności (niektórych) hiperobliczeń, a także wciąż nie rozpoznaną relację między obliczeniami cyfrowymi i hiperobliczeniami (czy te drugie są praktycznie sprowadzalne do tych pierwszych?), modele TMU są wciąż proponowane i analizowane.
Pozdrawiam wszystkich – Paweł Stacewicz.